Periodic variation of Atomic and Ionic Radii



Thus, in a period alkali metals show the largest values of atomic radii whereas halogens (excluding the zero groups) show the smallest values.
Structure of ionic solids :
The ionic crystals include salts, oxides, hydroxides, sulfides, and other inorganic compounds. An Ionic crystal contains a large number of cations and anions These ions are arranged in space in such a way to produce maximum stability. An ionic crystal contains a large number of cations and anions. Evidently, cations are smaller in size than anions. These Ions are arranged in such a way that there is more electrostatic attraction between the oppositely charged ions than the electrostatic repulsive forces between the same charged ions. The total number of nearest oppositely charged ions by which a given ion is surrounded is called the ‘coordination number‘. Thus, the coordination number of a cation is the number of nearest anions by which the cation is surrounded and vice-versa. In the case of Ionic crystal of AX-type e.g. NaCl, ZnS, CsCl, etc. In which both the cation and anion Cl Ions are six each. But it differs in the case of ionic crystals of the type AX2 orA2X. For example in CaF2 and Na2S, the number of each kind of ion is not the same i.e. the coordination number of the positive ion is different from that of the negative ion. In the case of CaF2, the coordination number of Ca2+ ions is just double that of F−ion i.e. the coordination number of Ca2+ and F−ions are 8 and 4 respectively.
Radius ratios (Rr) in ionic Crystals:
Lap.


cation. With the increase in the size of cations, the radius ratio also increases, and at the point,


Where ‘ccp’ is cubic close packing and ‘hcp’ is hexagonal close packing Thus, the radius ratio plays a very important role in deciding the stable structure of the ionic crystal.
Classification and structure of ionic solids :
There are different groups of ionic compounds of the type AX, AX2, A2X1, and AX3 depending on the relative number of positive and negative ions e.g. NaCl, ZnS1, CaF2, Na2S, CrCl2, and Cl l2, etc.
Structure of Sodium Chloride :
In NaCl, the radius ratio is 0.524 which lies between 0.414 to 0.732 (Table 2.8), which suggests that the crystal has either a square planar or octahedral structure, an X-ray study of NaCl crystal has shown that the crystal has octahedral structure li. e, each. Cl−ion is surrounded by six Na+ions (placed at the comers of a regular octahedron) and each Na+ ion is surrounded by six Cr – ions. In other words, the stoichiometry of Na+Cl is 1=1 and the coordination number is 6:6.figuro (2.06 ).

Structure of Zinc Chloride :
The value of radius ratio in ZnS is 0.40 which lies between 0.255 to 0.414and suggests a tetrahedral arrangement of ions i.e each Zn2+ ion is surrounded by four S2- ions and each S2- ion is surrounded by four Zn2+ions tetrahedrally. The coordination number of both ions is 4 and the stoichiometry is 4:4. There are two different forms of Zinc sulfide ore, one is Zinc blende and the other is wurtzite. Both have a 4:4 structure. The structure of the Zinc blende is a cubic close pack (ccp) Whereas the wurtzite structure is a hexagonal close pack (hcp). In both, structures Zn2+ ions occupy tetrahedral holes in the lattice.
Structure of Cesium Chloride :
This ionic crystal has a radius ratio value of 0.93 which lies between 0.732 to 0.999. Thus, this crystal has a body-centered cubic (bcc) arrangement. lie, each Cs+ ion is surrounded by eight Cl−ions and vice-versa. In other words, the coordination number is 8:8 and the stoichiometry of Cs+C- is 1:1.

Structure of Calcium Fluoride :
The value of the radius ratio in CaF2 is 0.73. In this case, each Ca2+ ion is surrounded by eight F−ions, giving a body-centered cubic arrangement of F−ions around each Ca2+ion and four Ca2+ ions are tetrahedrally arranged around each F – ion. Thus, the coordination number of Ca2+ and F−ions are 8 and 4 respectively and the stoichiometry of CaF2 is 8:4.
Limitations of radius ratio concept:
The radius ratio concept of ionic crystals is valid when:
1- the accurate ionic radii are known.
2- ions are spherical in shape and behave as hard inelastic spheres.
3- the arrangement of ions is stable and they will touch each other.
4- the bonding between the ions is 100% logical in character.
5- Ions may adopt the highest possible coordination number.