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RINGS, INTEGRAL DOMAINS
AND FIELDS

1. Introduction.

A set, which is merely a collection of distinct and distinguishable
objects, itself has no structure. By introducing one or more binary operations
in a set we have given an algebraic structure in it. Now the question arises
as to what is an Algebraic Structure.

- Definition 1.1. Algebraic Structure. k

A set with one or more binary operations satisfying certain specified

laws (e.g. commutative, associative or distributive) is called an Algebraic
Structure.

Groups, Rings, Integral domains, fields and vector spaces are the
simplest and most basic algebraic structures. In the current chapter we
limit ourselves to Rings, Integral Domais and Fields which have significant
applications in such diverse subjects like Physics, Chemistry, Zoology,
Botany, Engineering, Statistics, Managerial Sciences, Informatics (computer
science) etc. Moreover, these algebraic structures have many more valuable
applications to various branches of Mathematics itself.

2. Rings.

Definition 2.1. Asystem <R, + . >, consisting of a non-empty set R
and two internal binary operations + and - called addition and multiplication
respectively, is said to be a ring if the following postulates are satisfied :

(Purv., 95, 99; GKP, 91, 94, 96, 99, 2004)

(R;): <R,+>isan Abelian group, i.e.

(Ry;) Associativity : g + (b+c)=(a+b)+c,Ya,b,ceR.

(R;;) Existence of Additive Identity : 3 an element 0 € R such that

at+0=0+a=a,VaeckR

(R;3) Existence of Additive Inverse : for every a € R, 3 an element

' —a € R such that

at(-a)=(-a)+a=0.
(Ry) Commutativity : a+ b=5 4 g4 yVa beR
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(Ry): <R, ->isasemigroup, i.e.

(Ry) Associativity:a-(b-c)=(a-b)-¢c,Va, b, ceR.

(R;): Multiplication is left and right distributive over addition, i.e.

(Ry) a-(b+c¢)=a-b+a-c,V a b, c e R(Left Distributive
Law).

(Ry)) (b+c)-a=b-a+c-a,V a, b, ce R (Right Distributive
Law).

Note 2.1 The identity of the additive group <R, +> is called the zero

element of the ring and is denoted by 0.

Definition 2.2. Ring with unity. A ring with multiplicative identity
(called unit element) js called a ring with unity or ring with identity element.
(GKP, 2002)

The multiplicative identity is denoted by 1.

Definition 2.3. Commutative Ring. A ring for which multiplication is
commutative is called a commutative ring. (GKP, 2002)

Example 2.1. The set R consisting of a single element 0 with two
binary operations defined by 0 + 0 =0 and 0 - 0 = 0'is a ring. This ring is
called the Null Ring or the Zero Ring.

Example 2.2. The set of integers with addition and multiplication
forms a commutative ring with unit element.

It is called the ring of integers.

Example 2.3. The set of even integers with usual addition and
multiplication of integers forms a commutative ring without unit element.
(GKP, 94)
Example 2.4. The sets of rational, real and complex numbers under’
usual addition and multiplication form commutative rings with unit elements.
(GKP, 96)
Example 2.5. Let C be the set of all symbols (a, B), where a, B are real
numbers. We define

(e, B)=(y,8)ifa=yandB =5 (1)
In C we introduce an addition by defining for x =(a, B) and y =(y, §)
xty=(a+f)+(y+8)=(a+y,B+95) -(2)

It is obvious that x + y € C. Henice C is closed under addition.
We claim that C is an Abelian group under this binary operatmn

For addition in C is associative and commutative since it has been
defined in terms of addition of real numbers which s associative and
commutative.

The additive identity is (0 0) and the additive inverse of (a, B) is
(—at, -B).
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N
We now define a multiplication in C by defining for x = (q, B),

y=(1,8)
XY= (CC, B) 3 (Ys 5) = (G'.Y- 35: oo + BY)
It is obvious that x - y is again-in C andthatx-y=y-x,

Alsox - (1,0)=(1,0)-x=x VY x = (a, B) € C so that (1, 0) is a unit
element for C.

Further it is easy to show that multiplication is associative in C and
that it is distributive over addition.

Thus C forms a commutative ring with unit element.

Example 2.6. The sei Z_ ofresidue classes modulo the positive integer
m forms a commutative ring with unit element under addition and multiplication
of residue classes.

It is called the ring of residue classes modulo .

Solution. Let Z_ be the set of residue classes modulo m, i.e.
Z.={[0],[1],[2],....... % 5 1 - , [m=11}.

(R)): Obviously <Z_| +,> 1s an Abdian group.

(Ry): <Z_,- >isacommutative monoid, where [1] is the unit element.

(R)): Since the multi lication of integers is distributive over addition,
3 p g ! -
hence the multiplication is distributive over addition of residue
classes.

Thus<Z_,+_,- > isa commutative ring with unit element [1].
Example 2.7. Prove that the set
R=dx+y 3184298 six. 3. 2120}
is a ring with respect to addition and multiplication. (GKP, 2001)
Solution. Evidently elements of R are real numbers.
Let a, b, ¢ € R be arbitrary, then 3 Xs Vs 2 1 QSE,
a=x +y 3183 +z .913
b=x,+y,-31B 4z, .913
e=x3+y; 3B+ 2,913,
(Ry) a+b=(x +x,)+ 1 +xy) 318+ (2, +2,)- 93 e R,
Since xx, +3y,z, + 3z y,, x,, +Xx,y, + 32,2z, etc. € Q.
(Ry5) Associativity in the group <R, +>
. =(a+b)+c=a+(b+e).
(R3) a+b=b +a. For <R, +> is a commutative group.
(Rig) 0%0-3"3+0.93 ¢ Ris the zero element of R,
(Rys)  (=x)+(~x,)-3"3 +(=z,)- 913 & Ris the additive inverse of a.
(Ry) abeR,a+beR.
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For  ab=(xx;+3y,z,+3z2,y,)) + (x,y, + xpp, + 32,2,) - 313
+(xz,+x,2,)- 93 e R

(Ry3) Associativity in the group <R, -> = (ab) ¢ = a (b¢).

(Ry,) a(b+c)=ab+ ac, (Ryp)(b+c)a= éa + ca.

Thus <R, +, -> is a ring.

Example 2.8. Let R be the ring of real numbers under the usual

operations of addition and multiplication berween real numbers. Define
two compositions © and ® in R as follows : |

a®b=a+b+landa®b=ab+a+bV a, beR.

Prove that <R, ®, ®> is a ring. Determine O—element and the |—
element of this ring. - (GKP, 2000)

Solution. Itis given that R is a ring of real numbers w.r.t. usual addition
and multiplication. Also we know that <R, +,->is a field. Then

a,beR =>a+bab=>R=a+b+] eR,ab+a+beR
>aDbeR a®R®beR
- = Risclosed w.r.t. ® and ®.
R;: <R, ®>isan Abelian group.
(R;;) Risclosed w.r.t. the operation .
(R);) © iscommutative in Rsothata® b=54 a.
Fora+b+1=5b+a+1since (R, +) is Abelian group.
(R;3) @ isassociative in R, e (a®b)®c=a® (b b ¢).
For -
LHS. =(a+b+1)®c=(a+b+1)+c+1=a+b+c+2
RHS. =a®(b+c+ )=a+(b+c+1)+1
=a+b+c+2sothat
RH.S. =L.H.S.
(Ry4) Letebeidentity of Rw.rt. &.
Thena=a®e=a=a+e+1=e+ ] =0=>e=-1€R.
Je=~1 € R, additive identity.
(Rys) If b is the additive inverse of a, then

b@a=esothatb+a+l=-lorb=—q-—2.
a€eR=>-a-2e€eR=>beR.
Thus every element a € R has additive inverse 5=-2-2 = R.

R,: <R, ®>isasemigroup.

(R;)) Risclosedwrt. ® (already proved).

(Ry;) ®isassociativeinR, ie,(a®@5)Dec=c2

For L. H.S. =(ab+a+b)@c=(ab+a<=blc=I=
=abc+ab+bc+ca+a+bh+ec.

R.HS. = a® (bctb+c)=a(bc+b+c)+a~ (bc+ 5+ ¢)

=abctab+bc+ca+ra+ph+c.

Sothat L.H.S.=R.H.S.
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R;: Distributive laws hold in R, ie.,

(R;)) a®(b@c)=a®b(-Ba@cand(R;z)(b®c)®a=b®aEB

c®a.

For a®(b®¢) =a(b®Dc)+a+bDc
=a(b+c+l)+a+(b+c+l)
=2a+b+c+ab+ac+1. =il

abda®Rc =(ab+a+b)®(ac+a+c)

¥ =(abta+bd)+(ac+a+c)+1

ﬁ =2a+b+c+ab+ac+ 1. «(2)

Equating (1) to (2) we get (Ry,). Similarly we can prove (R;,).

R;: Letube I-element of R so that

a®@u=a ‘:>au+a+u:a:>au+u=0:>u(a+l)=0

:

> u=0,a-1=0.
_ = u=0.Foraisarbitrary so thata— 1 # 0.
Hence 0 is the 1-element of R. \

Thus <R, ®, ®3 is a ring with -1 and 0 as the zero element and 1-
element of R respectively.

Example 2.9. Prove that the set Mofn x n'matrices is a non-commutative
ring with unity relative to the matrix addition and matrix multiplication,
the elements of the matrices being real (rational, integer or complex).

Solution. Let 4, B, C € M be arbitrary. We know that the sum and
product of two n x n matrices are matrices of the same order. M is closed

w.r.t. addition and also the sum and product of two real numbers are real
numbers. Consequently

Ri: (Ry) A+BewM,
(Ry;) A+ B=B+4. Formatrix addition is commutative operation.
(Ri3) 3zeroelementOe Mst. 4+0=0 +A=A4, |

0 being 1 x n zero matrix.
(Ri;) Toeachd e M,3aunique—-A e M

o StLA+(-A)=—A+A4=0.
(Ris) (A+B)+C=4+(B+0).
R;: (R;) ABe M,
(Ry;) (4AB)C=A(BC).
R;: Since matrix mult*plication is distributive over addition.
~(A+B)C=AC+BC,C(A+B)=CA+CB.

The above arguments prove that M is a ring w.r.t. the two given

operations. Further if / is unit matrix of order n,then/ e MandAI=i4=4A,
so that [ is unity element for M.
Also AB # BA is general.

Thus M is a non-commutative ring with unity element / w.r.t. the
addition and maltipplication of matrices.
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Theorem 2.1. if a,b,c are arbitrary elements of a ring R, then

(i) a0=0a=0. (GKP,
(i) a(-b)=-(ab)=(-a)b. (GKP,
(m) (—a)(-b)=ab. (GKP,

(iv) a(b-c)=ab-ac.
(v) (b-c)a=ba-—ca.

Proof. (1) Since0+0=0

a (0+0) =a0
or a0 + a0 = a0, by left distributive law
or a0+ae0 =a0+0asx+0=x
By Cancellation law in (R, +), we get
a0 =0
Again 0+0 =0 gives
(0+0)a =0aqa
' or Oa+0a = Oa, by right distributive law
“or Oa+0a =0a+0
By Cancellation law in <R, +>, we get
Oa =0

‘Combining (1) and (2), we get the result (i).
(i1) a(-b+b)=a(=b)+ab
orald =a(—b)+ab.For—-b+b=0
0 = a (- b) + ab, on using (i).
This = additive inverse of ab is a (- ).

= —(ab)=a(-b)
Similarly (—a+a)b=(-a)b+ab.
But —a+a=0and 06=0.

Hence the last gives 0 =(-a)b+ab.

This = additive inverse of ab is (— a) b
=-(ab)=(-a)b.

From(3)and(4), (-a)b =(-ab)=a(-b).

2003)
2003)
2003y

(1)

-(2)

-(3)

(4)

Hence the result (ii).

(iii) (= a) (-b) =-[a (- b)], by case (ii).
= — [~ (ab)], again by case (ii)
=ab.For—(x)=xVxeR.
(iv) " a(b-c)=a[b+(-c)]
= ab + a (- c), by right distributive law
= ab + [- ac], by case (i1)
= ab — ac.
V)  (-da=[b+(-0)]a
C =ba+(-c)a
= ba — [~ ca]
= ba — ca.
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Theorem 2.2. If R is a ring with um’ty';!emrenr 1, then
(-Da=-a=a(-1) YVaecR

and -DED=1.
Proof. (1) —1+a=(-Da+1.a
or 0.a=(-1)a+1.a
ur 0=(-1)a+a. ,
This= (- 1)a=-a. [Fora+x=0=a=—x]
Again a(=1+1)=a(-1)+a.l
or a.0=a(-1)+a
or 0=a(-1)+a.
This = a (- 1) = - a. Also we have shown that -l)a=-a.
Combining these two, a(=1)=(=1Da=-a. (D

Taking a=—1in(1),
CDED=EDED=—(1)
or CDED==(=1)=1.
For — (- x) = x in additive groupor(—1)(-1)=1.
3. Subring.

Definition 3.1. Any non-empty subset S of a ring <R, +, > is called a
subring of <R, +, -> iff

<§,+, ->isaring. (GKP, 90, 91, 92, 95, 97, 98, 2000)

“Definition 3.2. The two subrings <R, +, -> and <{0}, +, > of the ring

<R, +, -> are called improper or trivial subrings of R. Any subring other
than these two subrings is called a proper or non-trivial subring.

Example 3.1. <Z, +, > is a ring. Since <mZ, +, -> is also a ring,
V'm#0 e Z. Moreover mZ — Z.

Hence <mZ, +, > is subring of the ring <Z, +, ->

Example 3.2. The set R of all # x » matrices with elements as rational
numbers, is a ring w.r.t. the operations of matrix addition and matrix multiplication.
Similarly the set S of all # x n matrices with elements as integers, is a ring

w.r.t. the operations of matrix addition and matrix multiplication. Hence S'is
_ asubring of R.

Example 3.3. The ring of Gaussian integers is a subring of the ring of
complex numbers.

. Example 3.4. The ring ofratioqal numbers is a subring of the ring of
real numbers.

Theorem 3.1, The necessary and sufficient conditions for a non-
emply subset S of a ring R to be a subring of R are \

() abeS—=a-bes. (GKP, 84, 87, 92, 95, 96, 97,

(i) a,beSmabesS. _ (CKP,1999,2002,2009; Purv., 1996)

Proof. Let S be a subring of a ring R so that S itself is a ring.
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Sis a ring = <S, +> is an Abelian group. T
Hence a,beS=a,—-beS {Ea}:h element of S has additive
' inverse in S
=a+(-b) e S[Sisclosed w.r.t. (+)]
= a— b € S. Hence the condition (i)
Again S is a ring = <§, -> is a semi-group
= Sisclosed w.r.t. multiplication - -
= ab € S5V a, b € S. Hence the condition (ii)

Conversely suppose that S is a non-empty subset of a ring R s.t. the
conditions (1) and (ii) hold.

To prove that S is a subring of R, it is enough to show that S is a ring.
The condition (i) says that
a,aeS=>a-aeS=>0eS.
Again 0eS,aeS=>0-aeS=>-aef
ie. aeS=>-acs.
Consequently, a,be S=a,-be S
= a-(-b) € §, by condition (i)
=a+bels.
a,beS=>abeR
=atb=b+a. |
For <R, +> is an Abelian group.
Similaly we can show that
at(b+tc)y=(a+b)+cVabces.
The above facts prove that <S, +> is an Abelian group.

Associativity of multiplication and distributivity of multiplication over
addition hold in S. Since they hold in R.

Thus <§, +, > is aring.

Theorem 3.2. The necessary and sufficient conditions that a non-
empty subset S of a ring R to be a subring of R are -
()S+(-8)=S. () SSc S.
Proof. Let S be a non-empty subset of a ring R s.t. S is a subring so
that S itself is a ring.
Anya+(-b)e S+(-S) =aeS,-be-S
—aeS, beS
= a-b e S For Sisasubring.

= a+(-b)eS.
Thus anya+(-b)eS+(-S)=>a+(-b)eS.
This=>S+ (-5 cS. (1)
Again aeS=>a0=>S$ [For 0 is the zero element of S]

S

=>aes§,-0e-S
>ada+(-0)eS+(S)
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> aeS+(-9).
Therefore ScS+(-3). =2y
Combining (2) with (1), we get the condition (i).
Any ab=>SS=>aeS,beS

= ab € §. For Sis closed w.r.t. )
This = SS < S. Hence the condition (ii).

Conversely suppose that S is a non-empty subset of a ring R s.t. the
conditions

(1) and (ii) hold.

Any a,beS=abeSScS=abes
S+(—S)=S:>S+(—S)<::S
any a,beS=>aeS -be-S

=a+t(-b)eS+(-8cS
Da+(-b)eS=>a-beSs.
Thus
a,beS=>a-beS abes.
Hence S is a subring of R due to theorem 3.1.

Theorem 3.3. The intersection of two subrings is again a subring.
(GKP, 2003)

Proof. Let S, and S, be subrings of a ring R.
Now a,bESlﬂSzma,beS,anda,bESz.
Also S, and S, are subrings
=a-beS,abe Sianda-b e S5, ab:e S,
= a-beS§ NS, abes, N S,.
Hence S, N S, is a subring of R due to theorem 3.1.

Theorem 3.47 4n arbitrqry intersection of subrings is a subring.
(GKP, 83, 90, 93, 96, 98, 2000)

Proof. Let S, beasubringofaringRY r e N ]

and let S=n{S.:r=1,2,3, .}

To prove that S is a subring of R, we have to show that
a,beS=a-beS abes

Now a,beS::»a,beEISJ,:»a,beS,VreN
=a-beS, abeS Vr[For S, 1s a subring]

oo o0
—a-be ™ S abe N §
r=l T r=t

= a-beS, abeS.

Theorem 3.5. The intersection of the family of subrings which contain a
given subset M of a ring R is the smallest subring containing the subser M.



10

Abstract Algebra

Proof. Let S, be a subring of a ring R s.t.
McS,cRVreN.

o8]
Let 3= M 8§
r=l °r
Being an arbitrary intersection of subrings, S is a subring of R.

o
Further McS VreN=MnMn..c ¥ =S

==.McS.

Thus §'is a subring ofRQ.t. McS.
.Ell S,cS§_ VreN
or S S, VreN.

This shows that S is contained in every subring of R. Consequently

S is the smallest subring of R.

Example 3.5. Prove that the set of matrices [g !c):, with a, b, ¢ integers,

is a subring of the ring of 2 x 2 matrices having elements as integers.

a

b
0 c:t , Where

Solution. Let S denote the set of matrices of the type Ii

a, b, c are integers.

Let R be the set of 2 x 2 matrices having elements as integers. Evidently

o K.

1

& b | b
Eow A,BES:>A-[0 C],B—{O Cz]’

where a|, b,, ¢y, a3, by, c, are integers.

A-B= [a‘ 02 b‘_b”] e s.

¢ . q-q
_|a bi||ay b [aay aby +be,
AB—[O Cl][o Cz:[—[ 0 CICZ ES
ile. AB € S.

Foraa,, a\b, + b,cy, ¢ ¢, all are integers. Thus A,BeS =
A-B €S, AB € S. Hence S is a subring of R due to theorem 3.1

Example 3.6. Let R be a ring of integers and let
S={mx:xeZ},

m being a fixed integer,

ie, S={0,tm,+2, *“3Im, .}

Show that S is a subring of R.

Solution. Any a € S= a= mx for some x € / — 4 & -
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For product of two integers is an integer.
This=> ScR.

Now a,beS=Jintegersxandy s.t. a = mx, b= my
=a-b=m(x-y), ab=m (mxy).
Also x —y, mxy are integers.
—a-beS,abeS.

=> S is a subring of R due to theorem 3.1.

Example 3.7. Prove that a non-empty subset S of a ring <R, +, -> is
subring iff
() a,beS=a+b,abes.
(ii) aeS=>-aedl,
Solution. Let S be a subring of a ring R so that <§, +, > isitself a ring.
<S,+, >isaring
= <§,+>isagroup and <S, -> is a semigroup
= (1).
ae Sand <S, +>is a group = inverse exists in <S, +>
=D —ae S=(ii).
Conversely let S be a non-empty subset of a ring R s.t. (i) and (ii)
hold.

Leta, b, ¢ € S be arbitrary.
R,: <§, +>isan Abelian group. For
(Ry;) Closureaxiom.a+5b e S, by (i).
(R;;) Existenceofinverse.ac S=—ge S, by (ii).
(Ry3) Existence of identity.
ae S§=a,—aecS,by (i)
= a+(-a)es,by(i)
=0€e8S.

(R;;) Commutative law. atb=b+a
a,beScR=>a,beR=>a+b=b+a
as <R, +> is an Abelian group.

(Ris) Associativelaw. (a+b)+c=a+ (b+¢),asa,b,ce ScR
and <R, +> is an Abelian.

R,: <S,->issemigroup. For

(Ry;) Closure axiom. ab € S, by (i).

(Ry,)  Associative law. (ab) ¢ = a (be)

as a,b,ceSc‘R::a,b,ceRandRisring
= (ab)c=a (bc).

Ry:  Distributive law. a(b+c)y=ab+ac

(b+c)a=ba+ca.
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Hence (S, +, -) isaring.

Example 3.8. If <R, +, -> is a ring, show that
Cr={xeR:xy=yxVyeR}
is a subring of R. Cy is called the centre of R. (GKP, 85)
Solution. We have

Cr={x€R:xy=yxVyeR}.
Let x,, x, € Ci be arbitrary. Then

X1, X3 € R (1)
Xy = yx
v
(2) = (x, =Ko W= Y (x, _‘xz) - -(3)
(1) =x;—x;€ Randx;x, € R .(4)

(3)and (4) = x,—-x,€ Cq
(x1x2) ¥y =x; (x)
=X, (yxy), by (2)

=(x,y) x,

= () x,, by (2)
or (x1x3) ¥y =y (x,x,) wal D)
(4)and (5) = x,x, € Cy.
Thus

Consequently Cy, is a subring of R due to theorem 3.1.
4. Integral Domains and Fields.
Definition 4.1. Zero Divisors.

The non-zero elements a, b of a ring R are called proper divisors of
zero or zero divisorsifab=0or ba=0. (GKP, 2003)

Example 4.1. The ring of numbers do not have zero divisors. For
there exist no two non-zero numbers such that their product is zero.

Example 4.2. The ring of matrices has zero divisors. For example if
[1 0] 00
1= lpg) - F= {1 1}
[0 0
0 0)
Hence the ring of matrices has zero divisors.

Example 4.3. In the ring of integers mod 6 under addition and
multiplication mod 6, [2] and [3] are zero divisors.

then AB=
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Example 4.4. Consider the ring of residue classes modulo a composite
positive integer m =r s, whre r <m, s < m.

Then [r]# [e], [5] = [o]
Now [r]- m (5] = [m]
= [r]-m[s]=[o]

Hence [7], [s] are zero-divisors.

Example 4.5. Consider the set, of all real valued functions defined
over [0, 1], which forms a ring with respect to addition and multiplication

defined as follows :
| (f+8) (x) =/(x) + g (),
(78) (x) =1 (x) g (x).
- Let fand g be defined as
1

1 for0<x<—
flx)=43"" ML
0 for=<x<]1
3

1

0 for0< <=
glx)=1 oy :;.
X 3‘ 01"5\’..1'_

Now (/g) (x)=f(x) g (x) =0V x [0, 1].
Therefore fg = 0 (the zero function)
But  f#0,g=0.
Hence f, gare zero-divisors. ‘
Definition 4.2, Let a (# 0), b, ¢ be elements of a ring R.
If a-b=a-c>b=c
and b-a=c-a=>b=c,
then we say that the restricted cancellation laws hold in R.
These are called restricted since cancellation by zero does not hold.

Theroem 4.1. A ring R is without zero-divisors if and only if the
restricted cancellation laws hold in R. (GKP, 1987, 91, 93, 95, 99, 2003)

Proof. Let R contain no zero divisors.
Suppose that x (% 0), y € R.
Thenx-y=0=y=0....(1)
For otherwise, if y # 0, then x is a zero-divisor which is contradictory
to the hypothesis.
Nowleta (£ 0),b, c € R. Then
a-b=a-c = a(b-c)=0 (bydistributive law)
=>b-c=0
=>b=c¢
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Similarly, it can be proved that

b-a=c-a =>b=c.

Conversely, suppose that the restricted cancellation laws hold in R.
Now. if possible, let R have zero-divisors. That is, let

a-b=0whrea=#0,b=0.

Thena-b=0=a-0

Hence by restricted left cancellation law

b=0,

which cOntradicts that b # 0.

Therefore R has no zero-divisors.

Definition 4.3. Integral domain.  (GKP, 1993, 98, 2000, Purv., 1997)

A ring is said to be an integral domain if it has no zero-divisors.

Thus aring R is called an integral domain if V a,beR,ab=0=2a=
Oorb=0. :

An Alternate Definition. Integral domain is defined as a commutative
ring having no zero-divisors.

Example 4.6. The ring of integers Z is an integral domain.

Example 4.7. The ring of even integers is an integral domain without
unit element.

Example 4.8. The ring R = {[0], [11, (2], (3], [4], [5), [6], [7]} under the
addition and multiplication modulo 8 is not an integral domain. For [2] € R,
[4] € R are two non-zero elements such that [2].; [4] = 0.

(GKP, 2002)

Example 4.9. The set Q under ordinary addition and multiplication is
an integral domain. For

ab=0:>a=00rb=OVa, beQ.

Definition 4.4. Division ring or skew field. A ring R is said to be a
Division ring or skew field if the set R* of non-zero elements of R forms a

multiplicative group. (GKP, 2000)
Theorem 4.2. A division ring is an integral domain but the converse
is not necessarily true, (GKP, 2000, 2002)

Proof. Let R be a division ring.

If possible let R contain zero divisors. Then, there exist
az0,b#0inRs.t.ab=0.

- a'(ab)=a'0[.a%0,R being a division ring, a-! exists in R]
or (a~! a) b = 0 due to associative law

or b = 0 which contradicts the supposition b = 0.

Hence R contains no zero divisors.

Therefore R is an integral domain.

The converse will be suppogted by the following example.

Consider the ring <Z, +, -> of integers which is an integral domain but

&
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it is not a division ring because non-zero efements do not have multiplicative
inverses in Z i.e., <Z* = Z-{0}, -> is not a group.
Theorem 4.3. A finite integral domain is a division ring.
(GKP, 86, 91, 93, 97, 2001)
Proof. Let R be a finite integral domain. Then R contains no zero
divisors. Therefore the set R* of non-zero elements of R forms a finite semi

group w.r.t. multiplication in which both the cancellation laws hold. Therefore
<R*, > 1s a group. Hence R is a division ring.

Definition 4.5. Field. A commutative division ring is called a field.

(GKP, 90, 92, 95, 98, PU, 95, 97, U.P.P.C.S. 98)

Definition 4.6. Field. A field is an algebraic system <F, +, ->, consisting
of a non-empty set F and two binary operations + and. called addition and
muItEplication, satisfying the following axioms :

(F,) : <F, +>is an Abelian group.

(F,) : <F*=F-{0}, -> is an Abelian group.

(F,) : Multiplication is distributive over addition.
(GKP, 90, 92, 95, 98; PU, 95, 97; U.P.P.C.S. 98)

Example 4.10. Give an example of a division ring {skew field) which is

not a field. (GKP, 85, 95)
Solution. Let R be set of matrices of the form
ol
A= [—eb a
where a and b are complex numbers.
o A
Let B - - (? E‘J s
[ P q]
C= 5B be any two members of R. Then
[ a+c b+d]}
+B= - =
A+B :—(b+d) a-f-c]
B i 'ac-—bg ad + b
AB_ __gc_&_g —E'd+f1"&"J .....(l)

Ifwetakea:aﬂ:,B=d+d,}'=ac—bg,5=ad+ bc |, then we have

a B

A+B=L_E ajIER

and AB=r I— §j|ER.
-8 Y

(R.) s (R, +)isan Abelian group.
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(R;;). Closure axiom. A+B e R (already proved).
(R;;). Commutativelaw. A+B=B+A_

This follows from the factthata+b=b +a.

(Ry3). Existence of identity.

O= [g g] € R
is additive identity s.t. A+O=0+A=A.
(R,y). Associative law. A + (B+C)=(A+B)+C.
It follows from the fact that
at(b+c)=(a+b)+c.
(R5).- Existence of inverse.

-1 _b
— A= l: E‘ "E:, € R

Is inverse of A s.t. A + (— A)=0.
(R;) :. (R, -) isa group.
(R;,). Closure Axiom. AB € R (already proved).
(R,;). Existence of identity.

10

[= [0 J € Ris identity s.t. Al =[A = A

(Ry;). Associative law. (AB)C=A (BC).

For (ab) c=a (bc).
(R,4). Existence of inverse. If A = O, then
adj A ] a —-b
=1 = = — _
S Y e [b aJER.

is inverse of A s.t. AA-1 = A-1 A =
(Rys)- Commutative law. AB = BA is not satisfied here.

[ ¢ d a b
For BA = _a 5:' [_B- E.:'

 Ti=ad-be -bH+a‘EJ*BA’bY(1)
or BA = AB

(R;) Distributive law. A(B+C)=AB+AC
(B+C)A=BA+CA.

Itis true in general in case of matrices.

Thus (R, +, -) is a skew field but not field.

0 a
Example 4.11. Prove that the set of al] matrices of the form [O b]'

(where a, b are real numbers) with'matrix addition and matrix multiplication

=
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is aring. Is it 2 commutative ring. Does it possess the unit element. Has it
zero divisors ?

. _ [0 a . e
Hlﬂt.T&ke A‘_ _0 b],B“'[O d},
FO’ a+c 0 ad

Since the product of two matrices js not commutative. So the
ring is not commutative. The ring possesses zero divisors. For if

00 01
A= [0 1], B = [0 0], then AB = O. It has no unit element,

Example 4.12. IfR is a ring satisfying all the conditions for a ring
with unity with the possible exceptionofa+b =5 + a, prove that the axiom
ofa+b=b +amust hold in R and that R is thus a ring.

(I.A.S. 1998)
Solution. (a+b)(l+l):a(l+l)+b(l+l), '
by left distributive law
=a-l+a-1+b-1+b-1
=(a+a)+(b+b)-Forl-x=xV ¢ R
=a+(a+b)+b, by associative law for (+).

Thus (a+b)(l+l):a+(a+b)+b...(1)

Again (a+b)(l+1)=(a+b)-1+(a+b)-1=(a+b)

' +(a+b)
or (a+b)(1+l):a+(b+a)+b....(2)

From (1) and (2),a+ (a +b) +b=a+(b+a)+h.

Applying left cancellation law for addition,

(a+b)+b=(b+a)+b.

Again right cancellation law for addition givesa+b=b+a,

Example 4.13. Do the following sets form an integral domain w.r.t.
ordinary addition and multiplication ? If so state if they are field :

(I) The set of numbers of the form bv2 with b as rational.

(2) The set of even integers.

(3) The set of positive integers.

Solution. (1) Let A= {bV2:b e Q}.
VX, yeA =3abe Qs.t.x=a\/2,yﬁb\;2.

= xy = (aV2) (bV2)=2ab g A = Xy € A.
Therefore A is not closed w.r.t. multiplication.

Hence A is not a ring. It means that A is neither an integral domain
nor a field.

(2) Let E denote the set of even integers. Then E is a commutative
ring. Also E is without zero divisors. For the product of two non-zero even
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integers is not zero. I ¢ E. For 1 is not an even integer. Hence E is an
integral domain. E is not a field.

(3) Let N denote set of positive integers. 0 ¢ N.
~. N is not ring.
Hence N is neither an integral domain nor a field.
Example 4.14. Show that the ring of real quaternions is a division
ring but not a field. IGKP, 87]
Solution. Consider the set
Q={a, +a,i+a,j+ayk:agy,a,,a, a,arereal numbersandi, j, k are
symbols satisfying the following relations}.
{ 2= =k =ik =1
j=-ji=k, k=-kj=1, ki=-1k = j-
We say that two elementsa =a,+a,i+a,j+a;kandb=by+ b, i+
b, ] + by k of Q are equal iff
a = b fort=0, 1,2, 3.
We define addition and multiplication in Q as follows :
(agta,i+a,jtazk)+(by+bi+b,j+byk)
=(ag +bg) +(a; +by) i+ (ay +by)j+(az+by)k,
(ag+a,i+ayj+azk)-(byg+bi+b,j+byk)
= (a, by — a, b, —a, b; ~ a; by) + (a, by + a, by + a, by —a; by) i
+(agb, +a, b, +a; b, —a, by)j+(ay by +a,by+a; b,—a, b))k
Multiplication is straightforward and it results from multiplying two
such elements formally and collecting terms using the relation given above.
The system (Q, +, .) forms non-commutative division ring. Forifa, b,
¢ € Q, then
() atbeQ;
(ii) Addition is associative and commutative over Q, since it is defined
it terms of addition of real numbers ;
(ifi) 0 =0 + 0i + 0j + Ok, is the zero element of Q ;
(iv) Additive inverse of ay+a;i+a,j+ta;kis—a;—a,1-2,j—a; k;
Thus Q forms an Abelian group under addition.
Moreover, if a, b, c € Q, then
(v) a.beQ;
(vi) a.(b.¢)=(a.b).c
(vit) Unitelement of Q is 1=1+01+0j+0k ;
(viii) If a;, + a,i + a,j + a,k = 0, then not all of a,, a,, a,, a, are zero
simultaneously.

5 L — - by 2
Since a,'sarereal, B=ayi+a?+a,2+a;2=0.
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Therefore 9
9 3y, 3. aj
Rl 5 J—-——=ke
BB B TP <=
ag- ay. a5 . a
and (30+ali+azi+ask)-[T}g'__lj]""_[%J"'g‘k)'—‘l-

Consequently the non-zero elements of Q form a group under
multiplication.

Moreover, multiplication is distributive over addition.
Therefore the system (Q, +, .) forms a division ring.
However, it can be verified that ab = ba.
Therefore the system (Q, +, .) will not form a field.
‘;Theurem 4.4. A finite commutative integral domain is a field,
[GKP, 1985]
Proof. In the light of theorem 4.3, a finite commutative integral domain
Is a commutative division ring. Hence it is a field due to definition 4.5.

Example 4.15. The set of rational numbers Q forms a field under
usual addition and multiplication.

Example 4.16. The set of real numbers R forms a field under usual
addition and multiplication.

Example 4.17. The set C of complex numbers forms a field under
usual addition and multiplication. [PU, 1997]

Example 4.18. Determine whether the set ot numbers of the forma +
bV2 with aand b as integers, is a ring w.r.t. addition and multiplication. Ifit
Isaring, is ita field or an integral domain ? [GKP, 84, 2002]

Solution. Let R = {a+bV2:a,b e Z}, where Z = set of integers.

Let X,Y,Z€R, then x=a+b\/2, y=c+d*J2,z=e+f“J2,
where X, y z € Z. Here we use the fact that sum, difference and product of
two integers are integers.

Xty =(@+c)+(b+d)V2eR
and xy =(ac +2bd)+ (ad + bc) V2 e R
as a+c,b+d,ac+2bd,ad +bc e Z.
(R,):(R, +) is an Abelian group.
(R,;j. Closure axiom. x +y e R, (already proved).
(R;,)- Existence of identity. 0+ 0V2 =0 e R is identity element s.t. -
X+0=0+x=x. |
(R;3). Commutative law. x +y = y+ X.
This follows form the fact that
(@a+c)+(b+d)V2=(c+a)+(d+b)V2
(R,,). Existence of inverse. x € R has its inverse
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—x =—a+(-b)Y2 eRs.t.
X+(-x) =—x+x=0
(R,5)- Associative law. (x+y)+z=x+(y+z)
For[(a+c¢)+e]+[(b+d)+f]V2
=[a+(cHe)]+([(a+d)+f]V2.

(R,)¥R, .) is semi-group. For
(R;;)- Closure axiom. xy € R, (already proved)
(R,,). Associative law. (xy) z=x (yz)

For x, y, zare real numbers and real numbers obey associative law for

multiplication.

and

(R;) Distributive law. x(y+2z) =xy+xz
(y+2)x =yx+=
Thus (R, +, .}is aring.
(R). Existence of unity. 1 =1+0V2 e Ris unity element (multiplicative

identity) s.t.

Lo

l.x=x.l=x
(R¢)*R has no divisors of zero, i.e.,
Xy=0 =>x=0,y=0

For xy=0 =>(a+bV¥2) (c+dv2)=0+0V2.
= (ac + 2bd) + (ad + bc) V2 = 0 + 02
—ac+2bd=0,ad+bc=0.
—>a,b=0,andc,d=0
:>x=a+bw12=0,y=c+d\’2={}.

Hence (R, +, .) is an integral domain. )
Now we claim that the integral domain (R, +, .) is not a field.
For this we have to show that x~! ¢ R forevery x € Rs.t. x #0.

Letx=a+bV2 e Rs.t. x#0.

Then R
X a+by2

it a—bﬁ
(a+bﬁ) (a-bﬁ)
_a-by2

a’ —2b2

a -b J
+ 2¢R
. a%—2p2 [a2—2b2 V2¢R

x"‘E R.
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%
a -b i
For 75— 3 and 35— are not necessarily integers.
a2 —2h2 3% —2h? & HEEE

mple 4.19. The set of all residue classes modulo a positive integer
P is an integral domain iff p is prime.

Solution. Let R denote the set of all residue classes modulo a positive
integer p so that

R={[x]:x=0,1,2,3, —p—1}.

Then we know that R is a commutative ring with unity element [1], [0]
being the zero element of R. Let [a], [b] € R be arbitrary so that

0<a, bz p—1.
R will be an integral domain iff it is free from zero divisors, i.e., iff
[a] . p [b]=[0] = [a]=[0] or [b]=[0].
So we have to show that p is prime iff
(a] . p [b]=[0] = [a]=[0] or [b] = [0].
pisprime, " fa].p[b]=[0] => p is prime, ab = 0 (mod p)
= a=0(mod p) orb =0 (mod p)
= [a] =[0] or [b] =[0].
Convers-ly, suppose,
[a] . p [b] = [0] = [a] =[0] or [b] = [0].
To prove p is prime.
Suppose not. Then p is composite.
p is composite = p is expressible as P=P; P
where 1 <p,, p,<p
= [P1= [Py - P, [py] 5 0], [p,] = [0]
= [p; - o] =[0]. For [p] = [0]

= [p,]=1[0] or [p,] =[0], by our assumption. Which is *
a contradiction,

For [p,]1#[0] and [p,] = [0].
Hence our initial assumption is wrong. Therefore p is prime.

Example 4.20. Show that the ring of residue classes modulo pisa
field iff p is a prime. IGKP, 1983, 93, 97, 2000, 2004, U.P.P.C.S. 98]

\;Sl:.l}ian. Example 4.19 and Theorem 4.4 serve the purpose.

eorem 4.5. Every field is an integral domain but the converse is
not true.

Proof. StepT I. Let F be a field so that
(1) (F, +) is an Abelian group.
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(2) (F', ) is a commutative group, where F' is a set of non-zero elements
of F,

(3) the two distributive laws hold in F.

To prove that F is an integral domain, we have to show that

(4) (F, +) is Abelian group,

(5) (F, .) is a semi-group,

(6) F is commutative,

(7) F has unity element,

(8) F has no zero divisors,

(9) the two distributive laws hold in F.

Evidently (1) = (4), (2) = (5), (6) and (7), (3) = (9).
Step I1. Remains to prove the condition (8).
For this we have to show that
ab=0;a,be R=>a=0o0rb=0.
ab=0;a,beRs.t.ax0 = ab =0, a-! exists
=al{ab)=al
or,(a'a)b=0
=b=0.
Again ab=0;a,beRst.b=0
= ab =0, b-! exists

= (ab) b-T'=0
=a(bb)=0
=a=0(.

The converse will be supported by an example. The ring of integers is
an integral domain but it is not a field, since the non-zero elements are not
inversible w.r.t. multiplication.

Definition 4.7. Subfield.

A non-empty subset F' of a field F is a subfield of Fif F'is closed w.r.t.
the compositions in F and F' itself is a field relative to these operations.

Example 4.21. The set of real numbers is g subfield of the field of
complex numbers.

Example 4.22. The set of rational numbers is a subfield of the field of
real numbers.

Theorem 4.6. The necessary and sufficient conditions for a non-
empty subset F' of a field F be a subfield of F are

(DaeF,beF=>a-beF

(MaeF,bx0eF = ab-! e F'. [GKP, 1996]
Proof. Let F'be a non-emi)t)f subset ofa field F s.t. F' is a sub-field of F.
F'is a subfield of F= F'and F both are field and F' — F
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= (F', +) is additive subgroup of (F, +)
—>a-bcF VabeF
1e. a,beF =a-bePF.
. Hence the condition (i).

(F', +,.)is a field = non-zero elements of F' form a multiplicative

group.
In view of this

a,beF'st.b=0 =ab'leF
=ableF.
Hence the condition (ii).

Conversely suppose that F' is a non-empty subset of F s.t. the conditions

(1) and (i1) hold.

The condition (i) says that (F', +) is a subgroup of the Abelian group
(F, +). Therefore (F', +) itself is an Abeliangroup.

~a,b,ceF=a,b,ceF Also (F, +,.)isa field
= (ab) c =a (bc) and
a(b+c)=ab+ac,(b+c)a=ba+ca

=> Associativity of multiplication and distributivity
of multiplication over addition both hold in F' c F.

The condition (ii) says that
aeF,a#z0>aaleF=1leF
= unity element belongs to F'.
Again the condition (ii) gives
leF,aeF'staz0=>laleF=aleF.

Hence non-zero elements have their inverses in F'.

a,beF'=a,beF=ab=ba.For(F +,.)is a field.

_ ab=baVa,bePF.
Thus the non-zero elements of F' form a commutative group.
Hence (F', +, .) is a field.
_ Definition 4.8. Characteristic of a ring. (GKP, 2007

Let R be aring with zero element 0 and suppose 3 a positive integer n

such that
" na=ata+...... uptonterms =0, ¥V a € R.

The smallest such positive integer n is called the characteristic of the
ring R.

[f there exists no such positive integer, then R is said to be of characteristic
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zero or infinite.
Example 4.23. 1f Z¢ = {[0], [1], [2], [31,[4), [5]},
then the ring <Z, +, -.> has the characteristic 6.
Solution. Since 6., [x]=[0],V[x] e Z¢ and
r¢[x]#0,V[x] e Z, suchthat 0 <r <6
Hence the ring <Z,, +,, ‘¢ has characteristic 6.
Definition 4.9. Characteristic of an Integral Domain.

The characteristic of an integral domain R is either 0 or a positive
integer n according as the order of the unity element e of R is 0 or n when
e is regarded as an element of the additive group of R, i.e., n is a least
positive integer s.t. ne = 0.

Definition 4.10. Characteristic of a Field.

The characteristic of a field is defined to be the characteristic of an
integral domain.

A field with non-zero characteristic is called Modular Field.

Example 4.24. The characteristic of the ficld (Z7,+7,+,)is 7, where Z,
=001, [11, [21, [3], [4], [5), [6)}.

Deﬁnition{l/.%()rdered Integral Domain.
[GKP, 83, 84, 96, 99, P.U. 1996]

An integral domain (D, +, -) is said to be ordered if it contains a
subset D*, s.t.

(1) D* is closed w.r.t. addition and multiplication as defined on D ie.,
a,beD*=a+beD* abe D
(if) For any a € D, one and only one of the following holds :
a=0,aeD*, —ae D
The elements of D* are called positive elements of D. Also the elements
of (D — D') are called negative elements of D.
Definition 4.12. Ordered Field.
A field F is said to be ordered when itis ordered as an integral domain.

Example 4.25. The integral domain of integers (rational or real numbers)
is ordered. Since it contains the subset N of all positive integers.

Example 4.26. The integral domain (or field) of complex numbers s
not ordered.

Theorem 4.7. The characteristic of a ring with unity is 0 or n > 0
according as the unity element ] regarded as a member of the additive
group of the ring has the order zero or n.

.

Proof. LetR be a ring with unity element 1. If ] has order zero, then
the characteristic of the ring is zero.
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Suppose 1 is of finite order n so that
l+1+1+ .. uptonterms=0i.e.,nl =0.
Let a be any element of R. Then, we have
na =a+a-+a-+ ... uptonterms
=la+ la+ la+ ... uptonterms
=(1+1+1+.. uptonterms)a [by dist. law]
=(mnl)a=0a=0.
order of a is =n.
Hence the characteristic of the ring is n.

eorem 4.8. The characteristic of an integral domain is 0 orn> 0
according as the order of any non—zero element regarded as a member of
the additive group of the integral domain is either 0 or n. [GKP, 2005]

Proof. Let D be an integral domain.

If a non—zero element of D is of order zero, then the characteristic of
D is zero.

Let the order of the non-zero element a be finite and equal to n. Then
na= 0.

Suppose b is any other non—zero element of D.

We have na=0 _ "
= (na)b=0
—=(at+a+ta+...uptonterms)b=20
= (ab+ab +ab+.... upto n terms) =0
—=a(b+b+b+.. uptonterms)=0
= a(nb) =0. .

But D is without zero divisors. Therefore a = 0 and a (nb) = 0
=nb=0. . N .

But the order of a is n =» n is the least pogitive integer such that
na = 0. Also we have n0 = 0. Thus n is the least pdsitive integer such that
nx =0V xeD. Hence D is of characteristic n.

Theorem 4.9. Each non—zero element of an integral domain D, regarded
as a member of the additive group of D, is of the same order. [GKP, 2005]

Proof. Let D be an integral domain. Suppose a is a non—zero element
of D and o (a) is finite and say, equal to n.

Suppose b is any other non-zero element of D and o (b) = m,
We haveo(a)=n =>na=40
=>nb = 0 [See theorem 4.8]

= o(b)£n=>m<n.
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Similarlvo(b)=m =mb=0=a(mb)=0
=a(b+b+....upto mtimes) =0
= (ab+ab+ab+.... uptomtimes) =0
= (a+a+a..uptomtimes)b=0
= (ma)b=0
= ma=0["."b#0andD is without zero divisors]
=o(a)<m=>n=<m.
Nowm <n,n<m = m=n. Hence o (a) = o (b).

Also if o (a) is zero, then o (b) cannot be finite. Becauseo(b)=m =
ma = 0 i1.e., the order of a is finite. Hence o (b) must also be zero.

Theorem 4.10. The characteristic of an integral domain is either 0 or
a prime number.

Proof. Suppose D is an integral domain. Let 0 2 a € D. If o (a) is zero,
then the characteristic of D is 0. If o (a) is finite, let o (a) = p. Then the
characteristic of D will be p. We are to prove that p must be prime.

Suppose p is not prime. Let p = p,p,, where 1 <p,, p, <p.

Since D is an integral domain, therefore the product of two non—zero
elements of D cannot be equal to 0.

S.aa=0i.e.,a2=0.

Now in an integral domain two non—zero elements are of the same
order.

Lo(a)=p @o(@)=p=>pat=0
= (p;p) 22 =0 [ p=p,p,]
= (a? + a’+aZ + ... upto p,p, terms) =0
= (p;a) (p;2) =0 '
= either p,a =0 or p,a = 0 = characteristic of D is either
p, or p, < p which is a contradiction [." D is without zero divisors]
Hence p must be prime.

Q‘}/eorem 4.11. Let D be an integral domain with unity element 1. If D
is an ordered integral domain show that 1 is a positive element of D.
IGKP, 1987]

Proof. Let D be an ordered integral domain with unity element I. Let
D* denote the set of positive elements of D.

Suppose 1 € D*.

Now ! # 0. Since 1 & B therefore by the definition of an ordered
integral domain, -

L e DE
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= (1) (=1) e D* [ D* is closed with respect to multiplication]
— 1 € D* which is a contradiction.
Hence 1 € D* i.e., | is a positive element of D.

Theorem 4.12. The set C of complex numbers is not an ordered integral
domain. [GKP, 1983, 86, 92, 94, 96, 99, P.U, 1994, 96]
Proof. Consideri e C.

Since i # 0 we have by the defining property of an ordered integral
domain, either 1€ C* or -1 e C*,

where C* denotes the set of positive elements of C.
Now 1e C* = 1.1=-1 e C*,
which is a contradiction to the fact that | is positive element of C.
Again —-1eC* = (-)({-1)=-1¢eC*
which 1s also a contradiction.
Therefore, none of the alternatives, namely,
1=0, e G, ~1e C*
holds.
Hence C is not ordered.

Theorem 4.13. The field Z  of residue classes modulo a prime p is not
ordered.

Proof. We have

Z, = {[0], (11, [2], e [P-113.

Let Z7 denote the set of positive elements in Z .

If[1] € Z*, then [1] +, [1]=[2] € Z*,..

Again[l] e Z*, [2] e Z* = [1] +,[2]=[3] € Z° ..

Proceeding in this way we obtain

ez, -2 2, = [+, [p-21=[p-1]€ Z",, ie.

[- 1] € Z*, (- [p) = (o).

Thus both [1] and [ 1] € Z* , which is impossible. Hence Z is not
an ordered integral domain.
5. Ideals and Quotient Rings.

Definition 5.1. Left Ideal.

A non-empty subset Sof aring R is called a left ideal of R if :
(1) S is additive subgroup of R,i.e.ae S,be S=a-b e S.
(M) vVreR,Vse S=>rs e S,

Definition 5.2.-Right Ideal.

A non-empty subset S of a ring R is called a right ideal of R if :
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(1) S is additive subgroup of R, ie.,.ae SbeS=abeS.
(i) YreR,VseS=sreS. [GKP, 90,92, 98, 2000, 2003; PU, 96]
\Eeﬁ'nition 5.3. Ideal.

A non-empty subset Sof aring R is called an ideal or two sided ideal
if it is both left and right ideal, i.e. if :

() Sisadditive subgroupofR,i.e.aeS,be S=>a-bes,
(i) VreR,VseS=>rse S,sres. [GKP, 2005]
%ﬁﬁion 5.4. Improper and Proper Ideals.
et (R, +, -) be aring. The ideals R and {0} are called improper or
irivial ideals of R. Any ideal other than these two ideals is called a proper
(or non-trivial) ideal of R.

Definition 5.5. Unit and Zero ldeals.

Let (R, +, -) be aring. The ideals R and {0} are called unit ideal and
zero ideal (or null ideal) of R respectively.

JDefinition 5.6. Simple Ring.
A ring is called a simple ring if it has no proper ideals.
Example 5.1. The subring of even integers is an ideal of ring integers.

Example 5.2. The set {mx : x € Z} is an ideal of the ring of integers.
m being any fixed integer.

Example 5.3. The set S of all matrices of the type [a 0] with a and

b 0

b as integers, forms a left ideal of the ring § of all 2 x 2 matrices with
elements as integers.

0
0

b as integers, forms a right ideal of the ring R of all 2 x 2 matrices with
elements as integers. '

Example 5.4. The set S of all matrices of the type [ i:l with a and

Example 5.5.IfRisa ring, then the set {x € R: ax=0} isa right ideal
of R. a being a fixed element of R.

Example 5.6. If R is a ring, then the set {x € R : xa = 0} is aleft ideal
of R.abeing a fixed element of R.

Example 5.7. The set S of integers is a subring of the ring of rational
numbers but S is not an ideal of R. For product of a rational and integer is
not always an integer.

Forexample 2ES,—I-ER:>2XL=-!—ES.
4 4 2

Example 5.8. The set S 6f rational numbers is subring of the ring R of
real numbers, but S is not an ideal of R. For product of a rational number
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and a real number is not always a rational number. For example

2 ES,—-]—-ER::>2X-'—]~—=

.....2.,_ GES
Js J5 5
Definition 5.7. Smallest Left Ideal Containing a Given Subset.

Let M be any non-empty subset of a ring R. A left ideal S of R,
containing M, is called the smallest left ideal of R, if S contains Af and S'is
contained in every left ideal of R, containing M. That is to say, a left iaeal
S of R, containing M, is called smallest left ideal of R if :

(1) SoM.

() McKcR,Kisany leftideal of R =K > S.

Remark5.1. Similarly we define :
(i) Smallest right ideal containing a given subset.
(1) Smallest ideal containing a given subset.

Definiticn 5.8. Let M be a non-empty subset of a ring R. The smallest
left ideal S (or R) containing M, is calied the left ideal generated by M and
is denoted by (A). Thus S = (M).

Definition 5.9. Let a be an arbitrary element of a ring R. The set
{ra+ ma:r e R, me Z} is defined as the left ideal generaied by an
element a. The expression for left ideal can be simplified if R is a ring with
unity element e. In this case

ratma =ra+m(ea). Fora= ea.
=(r+me)a
=(r+r)a, wherer'=mee R
=sa, wherer+r'=s e R.

Thus if Ris a ring with unity element e, then the left ideal generated
by anelementa € Ris {sa:s € R} cR.

Definition 5.10. A left ideal generated by a single element @ € R is
also called principal left ideal of R. The set
{ratma:re R, meZ}
is principal left ideal of R. a being a fixed element of R.

If Ris aring with unity element e and a € R, then Ra is principal left
ideal of R.

Remark 5.2. Similarly we define right ideal generated by a single
element. Thus

(1) If a is an arbitrary element of a ring R, then the set
{ar+am:reR me Z}
is a right ideal of R, generated by an element .

This set is also defined as principal right ideal of R. If R is a ring with
unity element e, then aR is defined as right ideal generated by an element
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a € R. aR is also defined as principal right ideal of R.
Definition 5.11. Principal Ideal.
An ideal of aring R is called principal ideal of R if it is generated by a
single element of R.
That is to say, the set
{ratas+ma:r,s € Rand m € Z}

is a principal ideal of R, generated by a single element a € R. This set is
also called ideal generated by an element a € R. The expression for principal
ideal can be simplified if R is a ring with unity element e.

In this case
ra+as+ ma =ra+as+m(ea). Fora=ea
=ra+as+(me)a
=ra+as+r"a, wherer'=mee R
={-F) dtas
=s'a+as,wheres'=r+r eR.
Hence a principal ideal of R is the set {s'a+as:s,s’e R} if R isaring
with unity element e.
Remark 5.3. If R is a ring with unity elements, then
(i) Ra={ra:re R} isaprincipal left ideal of R.
() aR={ar:r eR} isaprincipal right ideal of R.
(1) {ra+ar:r e R} isaprincipal ideal of R,
a being an element of R.
Remark S5.4. If R is a ring with unity element e, then the principal
ideal generated by e is the whole ring R. Forre=erV r e R.
Hence the ring R is called unit ideal.
Remark 5.5. If R is a ring with unity element, then the principal ideal
generated by the zero element 0 is the ring {0}.
For 0.r=0 VreR.
Hence the ring {0} is called zero ideal.
Detinition 5.12. Principal Ideal Ring. (GKP, 2006)
s A ring,-for which every ideal is a principal ideal, is called principai
ideal ring.
The commutative rings are examples of principal ideal rings.
Definition 5.13. Principal Ideal Domain.

An intergral domain is called principal ideal domain if its every ideal
is a principal ideal.

Definition 5.14. Prime Ideal.
An ideal Sofaring R is called a prime ideal of R if
abeng:aeS or beS.
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Notation . If an ideal S of a ring Ris generated by an element a € R,
then we write. S=(a).

Similarly if an ideal S of a ring R is generated by elements a, b € R,
then we write S=({ab}).

Example 5.9. In the ring Z of integers

(1)S={3r:r e Z} is aprime ideal of R generated by 3 and we also
write S=(3).

Here ab € S = 3| ab. Also 3 is prime

=3|aor3ls

—acSorbesS
= Sis prime.

Similarly (5), (7), (11) etc. are examples of prime ideals. Therefore the
set {mr : r € Z} is a prime ideal of the ring of integers for every prime

integer m.
(i1) The ideal {4r:r € Z} =(4) is not prime.
Forabe (4) =>4 l ab. Also 4 is composite integer,
does not imply 4 Ia ord | &
PHae(4)orbe(4).
Hence ab € (4) does not imply a € (4) or b € (4).
Therefore (4) is not prime.
For example 6.2 € (4), but neither 6 nor 2 belongs to (4).
Definition 5.15. Maximal Ideal.
An ideal S of aring R is called a maximal ideal of R if
(i) SispropelycontainedinR,i.e., SCcRand S=R.
(1) S'ts an ideal off?, ScS§'=§"'=RorS =8§.
Example 5.10 Consider the ring R of integers :
2)={2x:x €Z}={0,+2,+4,+6,+8,+10,...}
(3)={0,+3,+6,+9,+12,+15, ...}
4)={0,£4,+8,+12,£16,£20,...}
(5)={0,£5,£10,+15,£20,%25, ...}
(6)={0,+6,+12,+18,+24,1+30,...}
Evidently (6) < (2), (6) < (3).
Hence if m 1s a composite, say m = ab, then
(m) < (a), (m) < (b).
(3), (5), (7) are maximal ideals of the ring of integers.
Definition 5.16. Quotient Ring.

Let S be an ideal of a ring R. Let R/S denote the fam1ly of cosets of S
inR,ie,RIS={S+a:aeR}.

Let S +a, S + b be arbitrary elements of R/S. Define the operations of
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addition and multiplication on R/S as follows :

(S+a)+(S+ b)=S+(a+h)
(S+a)(S+b)=S+ab.
Then R/S is aring w.r.t. these operations. (Refer Theorem 5.19).
This ring (R/S, +, - ) is called quotient ring or factor ring or difference

ring or residue class ring. [GKP, 2005]

Theorem 5.1. The quotient ring R/S is an integral domain iff S is

prime.

Proof. See theorem 5.22.
Theorem 5,2. The intersection of two left ideals is a left ideal.

Proof. Let S, and S, be two left ideals of a ring R so that

(1) S, and S, both are additive subgroups of R,

(11) reR,aes, =racsS,.

and r € R, a €S, rae S,.

Since intersection of two subgroups is a subgroup and

reR,aeS,mSz :reR,aeSlandaeSz
=>rekR,aes, andre R, a e,
= ra e 5 and ra € S, according to (ii)
=raeSns,.

Hence the result follows.

Theorem 5.3. To prove that the intersection of any Jamily of '!eﬁ

ideals of a ring is a left ideal.

Proof. Let S, be a left ideal of a ring R for r=1,2.3, ... so that

(i) S, isa additive subgroup of R.

() xeR, a €S, =xaeS forr= L2203, ...

Since an arbitrary intersection of subgroups is again a subgroup,

xeR ae R] S, = xe€R,aeS§ forr=1,23,..
r=

= xae S forr=1,2,3,..
[This follows from (fi)]
=5 XS ;El] S.
_ =
Hence the result follows. _
The intersection of any family of right ideals is a right ideal.
The proof is similar to Theorem 5 3.

Theorem 5.4. The intersection of two ideals is an ideal.
|GKP, 84, 99, 2004, PU, 96] .

Proof. Let §| and S, be ideals of a ring R so that
() S, and S, both are additive subgroups of R
=
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and

(i) reR a eSS =raare S, 3
rER,aES;,_:‘:»ra,areSz

To prove that §; N S, is an ideal of R.

For this we have to prove the following.

(W) S; NS, is additive subgroup of R.

(Iv) re R,ae §;nS,=>ra, are S NS,

Evidently (i) = (iii),

reR,ae§nS, —rekR aecS andaes,
=rekR aes andr e R,ae S,
= ra,ar € §; and ra, ar € S, by (ii)
=ra,ar € §; NS, = (iv).

Theorem 5.5. Show that the intersection of any arbitrary family of
ideals of a ring is itself an ideal,

Proof. Let, S_be an ideal of a ringRforr=1,2, 3, ... so that
(1) S, is a additive subgroup of R.
(i) aeS,xeR>ax,xae S forr=1,2,3, ..

To prove that ;?\] S, is an ideal of R.
I=
For this we have to prove the following :

(1) -"\l S, is additive subgroup of R.
r=

(=) o0
(iv) xe R,ae Al S, = xa, ax € "\I S,
r= =

Evidently (i) = (iii),
For an arbitrary intersection of subgroups is again a subgroup,
xeR,ae ﬁ] S SxeRae S torr=1,2,3,
=
=xa,axe S forr=1,2,3, ...
[This follows from (ii)]

o0
= xa, ax € f"\l S..
r=

Hence the result (iv).

Theorem 5.6. 4 field has no proper ideals.
or

A fleld F has only two ideals namely {0} and F. (GKP, 2006)

Proof. Let S be an arbitrary ideal of a field F. To prove that F has no

proper ideal, i.e., to prove that F has only two improper ideals namely {0}
and F.

For this we have to show that
S={0} or S=F.
If §= {0}, then the theorem is proved.
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Consider the case in which S # {0}.
ThendJae Ssta=#0
aeS,ScF>aeF>a'le Fasa=0
ae S, a'e Foa'lae S bydef ofideal = 1€ S
any xeFoxefF,1eS = lxe Sbydef. ideal
—>xeS
Fc §. ButS c F. Combining the two,
=
This proves the theorem.
TheOrem 5.7. A commutative ring with unity is a field if it has no
proper ideals. (GKP., 2007).
An Alternative Statement. 4 commutative ring R with unity, whose
only ideals are null ideal and unit ideal, is a field.
Proof. Let R be a commutative ring with unity element s.t. R has no
proper ideals so that the only ideals of R are {0} and R.
To prove that R is a field.
We know that a field is a commutative ring with unity s.t. every non-
zero element of R has a multiplicative inverse in R.
Let a € R be arbitrary s.t. a # 0.
If we show that ! € R, then the result will follow.
It can be shown that Ra= {ra:r € R} is an ideal of R,
(Refer Theorem 5.11)
By assumption, Ra= {0} or R
le R=>1lae Ra= aeRa= Rs+ {0}
= Ra=R.For Ra=Ror {0}
Also 1 € R. Hence | € Raandsothat 3 b € Rs.t. ba= 1. But R is
commutative.
p ba=ab=1.
This=>al=b,be R => al € R.
Hence the theorem.

Theorem 5.8. If R is a commutative ring with unity, then it is a field
iff it has no proper ideals.

Proof. (i) suppose R is a commutative ring with unity s.t. R has no
proper ideals.

To prove that R is a field. [For proof refer Theorem 5.7].

(ii) Let R be a commutative ring with unity s.t. it is a field.

To prove that R has no proper ideals, i.e., to prove that R has only
improper ideals namely {0} and R. [For proof refer theorem 5.6].

Theorem 5.9. Let R be a ring with unity element such thet the only

2
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right ideals of R are {0} and R. Prove that R is a division ring.
Solution. Recall that a ring R with;unity is a division ring if the non-
zero elements of R form a multiplicative group.

Let R be a ring with unity element. Let the only right ideals of R be {0)
and R.

To prove that R is a division ring, we have to show that every non-
zero element of R has a multiplicative inverse in R.
Let a# 0 € R be arbitrary. To prove a-! € R.

It can be shown that aR = {ar : r € R} is a right ideal of R. (Refer
Theorem 5.11). :

By assumption aR =R or {0}
leR = aleaR=aeaR = aR # {0}
= aR=R.
Thus aR = R.

Nowl e R=/e€aR(-aR=R)=>3bec Rst. 1=ab
= Right multiplicative inverse of ais b
= inverse of g is b
=al=beR.

Theorem 5.10. 4 division ring is a simple ring.

Proof. Let R be a division ring so that R is a ring s.t. its non-zero
elements form a multiplicative group.

To prove that R is a simple ring, we have to show that R has only two
ideals namely {0} and R.

- Let Sbe an arbitrary ideal of R. If we show that S = {0} or S = R the
result will follow.

If §= {0}, then the theorem is proved.
Consider the case in which §# {0},
aeSCR=>aeR,az0=>aleR

[For non-zero elements of R form multiplicative group]
aeS,a'e R=>a'ae S, bydef ofideal = 1e § )

anyx e R =>xe R, € S=1x e Sbydef. ofideal
=xes

~ RcS. ButScR.
Combining the two, S= R.
This proves the theorem.

Theorem 5.11. If R be a commutative ring and a € R, then show that
Ra = {ra:r € R} is anideal of R.
Proof. Let R be a commutative ring and let
a€ R, Ra={ra:reR}.



36 Abstract Algebra

To prove that Ra is an ideal of R.
For this we have to show that
(i) Ra is additive subgroup of R.
(M) re R ue Ra= rue Ra, ur € Ra.
Letx, y € Rabe arbitrary, then3 r,s € R s.1.
xX=ra,y=sa . (1)
r.seR=>r € R, —se R For(R,+)isan Abelian group
Drt(-s)eR=>r-seR>>(r—-s)aecRa
=>x—y € Ra, by (1).
Thus X,y € Ra=x-y e Ra.
This proves the result (1).
(1) Letr € R, u € Rabe arbitrary. )
Then u=r"a for some r' € R.
ru=r(r' a)=(rr')a. -(2)
Butr,”€e R = rr'e R. For(R,+,-)isaring
= (rr')a € Ra= ru € Ra, by (2).
But Ra < R and R is commutative. Cour =ru.
Consequently, re R,ue Ra= ru, ur € Ra.
‘Hence the result (ii).
Theorem 5.12. If R is a ccmmutative ring with unity and a € R, then
Ra={ra:r e R} is a principal ideal of R, generated by a.
Proof. Let R be commutative ring with unity element e and a € R,
Ra= {ra:r e R}.
(i) To prove that Ra is an ideal of R.
(Write the proof of Theorem 5.11)
(if) To prove that Ra = (a), i.e., the ideal Ra is generately by a.
Let S be an ideal generated by an element of a, so that § = (a)
S=(a) ={ra+as+ma:r,se€ Rand m € Z) «:43)
ra-+ as+ ma =ra+ sa+ ma. For R is commutative.
=ra+sa+m(ea). Forea=ae=a
=ra+sa+(me)a
=ra+sa+t+r' a whereme=r e R
={r¥ts+r a
=xa,wherex=r+s+r'eR
Finally, ra+as+ma=xa,x e R.
Hence, (3) becomes
: S={xa:x e R} =Ra.
But § = (a). Hence Ra = (a).
Now we have shown that Ra is an ideal generated by a single element
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a. By definition, Ra is a principal ideal of R.

Theorem 5.13. The ring of integers is a principal ideal domain.
or

The ring of integers is a principa!ﬁid;a! ring.

Proof. Let Z denote the ring ofintegers. Also Z is integral domain.

Let Sbe an ideal of Z.

[f we show that S is a principal ideal of Z, the result will follow :

IfS= {0}, then Sis clearly a principal ideal.

Now consider the case inswhich § #{0}.

Consequently 3 at least an element @ € Ss.t. g = 0.

aeS=>-aeS§. For(S,+)isadditive subgroup of Z.

Of course one of a and - a is necessarily positive. Thus S contains
positive integers. Let S* be the set of positive elements of S.

We know that every set of positive elements has a least member, say
b. Hence S* has the least element .

We claim § = (), i.e., S is an ideal generated by 4.
Let x € S be arbitrary. By division algorithm, 3 integers g and 7 s.t.
x=bg+r,0<r<s,
beS,geZ=bgeS. ForSisan ideal.
xe€S,bgeS >xeS —bgeS. For (S, +) is a group

=x t(-bg)eS=>x-bge S
=rel.

Nowr € §,0 <r <5, bis the least element of S.

Therefore r=0.

. x = bg for some g € Z.

Hence S={bq:qe Z}=(b).

Thus Sis an ideal of Z, generated by a single element 4. Hence Sisa’

principal ideal.
Theorem 5.14. Every field is a principal ideal ring.
Proof. Let F be a field.

To prove that Fis a principal ideal ring, we have to show that every
ideal of F is a principal ideal.

We know that a field has only two ideals namely {0} and F, by Theoren:
5.6 But the null ideal {0} is generated by 0, and unit ideal F is generated by
the unity element. Thus both these ideals are principal ideals. Hence the
theorem follows.

Theorem 5.15. Sum of two ideals. Ler S, and S, be ideals of a ring R
andlet S, + S, = {a, +a,: a, €S5,a,€8,}.ThenS| + S, is an ideal of R,
generated by S, U §,.
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Proof. Let S| and S, be ideals of a ring R so that
(1) S;and S, are additive subgroups of R.
() reRr, e eS =ra,ar5c S,
and reR,azeSzmraz, a, r €S,.
Also let S1+5,={a,+ay:a,€8,,a,€ 5,}.
To prove that §| + S, is an ideal of R, generated by §, U S,.
(i) S; + S, is an additive subgroup of R.
Fora, +a, e §,+8,, b, + b, €8+,
= a,€5,,a,€8;b,€85,b,€8,
= ay, b, € S, and a,, b, € S,
= a;=b) €5, and a, - b, € S,, according to (i)
= (a; = b)) +(a,- b,) € S, + 5,
= (a, +a,) - (b, +b,) € S, +85,.
For (R, +) is an Abelian group,
Le, a,+a,, by +b, e $+8,=> (a, + a))— (b, + b,) = S, * 8;.
(iv) reR,a,ta, e Sp+S5;, = r (g +az)and(al~!-1:1v2)re$‘]+.5'2
For rER,aI+aZESl+S2
=reR,a €S,a,e8,
=re€R,a €S andreR, aces,
=ray, ayr € S,and ra,, a,r € S,, by (ii)
=raytra, €S +S,andayr+a,r e S, + S,
=r(a; +a)) € S+, and (a, ta)resS +8,.

The conditions (iii) and (iv) taken together declare that S, +8§,is an
ideal of R.

Remains to prove that S, + S, is generated by S, US,ie,
S)+85,=(5,uSs,).
Since0 € §;,0 e S, according to (i)
4 €5 =a,€5,0e8, >a,=a,+0cS§,+5,
=a €8+,
This =8, cS, +8,.
Similarly we can show that §$, 8§, +85,.
Now§, ©§,+85,,8,c S, +85,
2 HUS(5,+5) U (S, +5,y) =5 +S5,
>S5 usS,cS +8S,.
Thus S, +.5, is an ideal containing §, U S,.
Also if S is any ideal of R containing S, U S,, then S must contain

S| + §,. Consequently S, *+S, is the smallest ideal of R, containing
S VS, Le. 5 +8,=(S, US,).

Theorem 5.16. If'S, and«Sz are left ideals of a ring R, then
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Sit8;={a,+a,:a,€8,,a,€8S,}
is a left ideal of R, generated by Sy U S,.

Another Statement. The left ideal generated by the union S, VS, of
two ideals is the set S, + S, containing of the elements of R obtained on
adding any element of S, to any element of S,.

Proof. Let S| and S, be left ideals of a ring R so that

(1) S, and S, are additive subgroups of R.

(i1) reR,a €S =ra eS8, '
and re R, azeSzzrazeSz. |

Alsolet 8, +S,={a,+ a,:a,€8,,a,¢ S,}-

To prove that S, + S, is a left ideal of R, generated by S, US,.

For this we have to prove the following :

(i) S) + S, is additive subgroup of R.

(V) reR,a;+a,€ 8, +8,=>r(a, +ay,) €S8, +8;.

(V) S;+8,=(S,US,).

Now the proof can be completed with the help of Theorem 5.15.

Theorem 5.17. An ideal S of the ring of integers R is maximal if and
only if § is generated by someprime integer. (I.A.S. 1997)

Proof. Let S be an ideal of the ring of integers R. We know that R is
a principal ideal ring (Refer Theorem 5.13). Hence Sis a principal ideal and
therefore we can suppose that this ideal is generated by a single integer,
say p. Since p and — p both generate the same ideal and therefore we take
P as positive integer. Then we write S= (p).

We have to prove that
(i) pisprime = Sis maximal.
(11) * Sis maximal = p is prime.
(i) Letp be prime and let S" be an ideal of Rs.t. S S = R. Since §
is a principal ideal and so we take S’ = (g), where g Is some positive integer.
ScS =@ c@=pe(g
=>pef{gx:xeZ}
= p = gn for seme positive integer n.
Also p is prime.
—eithern=1,g=p; or n=p,g=1
=g=por g=1
=(q)=(p) or (g)=(1)
=S5"=S or §'=R.
Finally ScS cR=8=Sor =R
Therefore §’ is maximal.
(i)~ Let S be maximal.
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To prove p is prime.
Suppose the contrary. Then p is composite.
Let us take p = mn, where m, n# 1.
p=mn=>p)c(mc(l)=R,(p)c(n)c(1)=R
= Sc(m)c R. Also S is maximal
=>(m)=Sor(m)=R.
(m)=R = (m)=(1). For (1) =R
>m=1. A contradiction. Form = 1.
(m)=8S =>(m)=(p)=>(m)={px:xe Z}
= m = pr for some integer . Also p = mn
>m=mnr=>nr=1.Form=0
Also n and r integers.
=r=landn=1.
In Particular n= 1. A contradiction. Forn # 1.
Hence p must be prime.
Theorem 5.18 Let R be a commutative ring with unity and let a and
b be non-zero elements of R. Then (a) = (b) iff a and b are associates.
Proof. Let R be a commutative ring with unity.
Leta, b € Rbe arbitrary s.t. a, b # 0.
(@) ={ax:xeZ},(b)={bx:x e Z).
(a) = (b) = (a) = (b) and (b) < (a)
= ae (b),be (a)
= a=br,b=asforsomer,s, € R
= b | a, a ‘ b = a and b are associates.
Conversely a lb, b I a = b=am,a=bnforsomem, neR
= b € (a),a e(b)
= (b) = (a), (a) = (b)
= (b) = (a).
Theorem 5.19. [f'S is an ideal of a ring R, then the set
R/S ={§+a:ae R}
is a ring for the two operations in R/S defined as
(S+a)+(S+b) =S+(a+b)
S+a)(S+b4)=8S+ab VabeR. [GKP, 2005]
Proofl.Leta, b, c,a’, b', ¢’ € Rbe arbitrary, then S+ a € R/S etc.

First of all we shall show that these operations are well defined. For
proving this we have to prove that

S+a=S+ad andS+b=S+b'= (S+a)+(S+b)=(S+a')+(S + b7)
and (S +a) (S+8)=(S+ a) (S+4")
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or

ie.

le.

Ie.

i)

S+a=8S+ad =>aeS+a" =>a=a+a forsomeaeS.

Similarly S+b=S+b'=b=p+b’'forsomep e S.

Now a=o+a',b=p8 +b".

a+b=(x+a)+(B+b")
=(a+PB)+(a"+b"). For(R,+)isan Abelian group
(a+b)—(a"+b")=a +p.

Buta,BeS = o+ eS.For(S, +)is a subgroup of R
=(a+b)—(a"+b)eS
=S+(a+b)=S+(a' +b")
= (S+a)+(S+b)=(S+a)+(S+b).

Thus addition in R/S is well defined.

ab=(a+a")(B+b)=af +ab' +a'f+a'b’

ab—a'd =af +(ab’ +a'B) (1)
Since S is two sided ideal '
a,peSanda’,b’e R =ab’,a'B,af eSS
=af+ab' +a’'Be$S
[For (S, +) is subgroup of R}
= ab-a'b" € S, by (1)
= S +ab=S+a'b’
= (S+a)(S+b)=(S+a")(S+b)
= multiplication in R/S is well defined.
Proof II. Next our aim is to show that (R/S, +, -) is aring.
(1) R/Sisclosed w.r.t. (+) and (),
(S+a)+(S+b)eR/S,(S+a)(S+b) e R/S.
Fora,be R =>a+b,abe R. For (R +, -)isaring
=2>S+(a+b),S+abeR/S
= (S+a)+{S+b)e R/S
and (S+2a)(S+b) e R/S.

(i) Addition is commutative in R/S,
(S+a)+(S+b)=(S+b)+(S+a).

For (R, +) is an Abelian group =S a+b=b+a
=S+(a+b)=S+(b+a)
S(S+ta)+(§+b)=(S+b)+(S+a).

(iif) Addition is associative in R/S.

[(S+a)+(S+H)]+(S+c)=(S+a)+[(S+b)+(S+0)]
For L.HS. =[S+ (a+b)] +(S+c)=S+[(a+b)+¢]
=St{a+t(b+c)]=(S+ta)+[S+(b+c)]
= (S+a)+ [(S+b) +(S+0)]
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=R.H.S.
(1v) Multiplication is associative in R/S.
(S+a)(S+H)](Ste)=(S+a)[(S+b)(S+0)]
For LH.S. =(S+ab)(S+c)=S+(ab) c=S+a(bc)
=($§+a)(S+oc)=(S+a)[(S+5)(S+0))]
=R HS.
(v) Existence of additive identity.
‘ 0eR=>S5=8+0¢€ R/S.
Also S+ta)+(S+0)=S+(a+0)=S+a.
Thus 3 additive identity S=0+ S € R/S.
(vi) Existence of additive inverse,
S+ (—a)=S5S-a e R/Sisadditive inverse of S+ a € R/S.
Forae R=>-aeR
=S+ (~-a) e R/S
= §+ta)+[S+(-a)]=S+(a-a)=S+0=S§
' '~ = S-aisadditive inverse of S+ a € R/S
(vi1) Multiplication is distributive over addition, i.e.,
(S+a)[(S+hH)+(S+)]=(S+a)(S+b)+(S+a)(S+c)
[S+8)+(S+)](S+a)=(S+b)(S+a)+(S+c)(S+a)
For LHS.of 2) =(S+a)[S+(b+c)]=S+a(b+c)
=S8+ (ab+ac)=(S+ab)+(S+ac)
=(S+a)(S+H)+(S+a)(S+c)
= R.H.S. of (2).
Similarly we can prove (3).
Hence (R/S, +, -) 1s aring. R/S is called Quotient ring.

Theorem 5.20. Suppose R/S is a quotient ring. Then show that

(1) 1if Ris commutative, the R/S is commutative.
(i) if R has a unity element 1, so also has R/S namely S+ 1.
Proof. (1) Ris commutative,
—>ab=ba VabeR
=S+ab=S+ba
=>(S+a)(S+b)=(S+b)(S+a)
= R/S is comnmutative.
(1) R has unity element 1
=>leRanda.l=l.a=aVaeR
=S+l eR/SandS+(a.1)=S+(l.a)=S+a
=S8+ 1 e R/Sand (S+a) (S+1) = (S+1) (S+a) = S+a
=S+ 1 € R/S is unity element of R'S.

3

(2
.0)
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Theorem 5.21. An ideal S of a commutative ring R with unity is maximal
iff the residue class (Quotient) ring R/S is a field.

Proof. Let R be a commutative ring with unity element so that R/S is

a commutative ring with unity element. The zero element and unit element
of R/Sare Sand S + | respectively.

Step L. Suppose the ideal S is maximal in R.

By assumption, R/S is a commutative ring with unity. Hence if we
show that every non-zero element of R/S has a multiplicative inverse in R/
S, then it will be proved that R/S is a field.

Let S + a be a non-zero element of R/S so that S + a = S.
Consequently a ¢ S.

Our aim is to prove that (S +a)~! € R/S.

(a) isprincipal ideal of R generated by a. Since sum of two ideals is
an ideal.

Hence S+ (a)isan ideal of R.
a € S = Sis properly contained in S +(a).
Also S is maximal ideal of R.
= S+ (a)=R.

(a)={ax:x e R}

S+(@)=R,leR =>1 € S+ (a)
—=3beS,aeRst. l=b+aa
= l-ca=beS=1-aies
=S+1=S+aa=S+1 =(S+a)(S+a)
=>(S+a)(S+a) =(S+1)

= unity element of R/S
=>(S+a)y!=S+«[ForR/Sis commutative]
Also o € R.

=>(S+a)y!=S+a,S+aeR/S
={(S+a)yt e R/S.

Hence R/S is a field.

Step IL Suppose R/S is a field.

Let S"be an ideal of Rs.t. S S’, S # S’. If we show that §' = R, the
result will follow.

Toprove Rc §S'.

Letx € R be drbitrary s.t. x & Sscthat S+ x#S.
e 5, Sles,

Hencedy eS's.t.y eSsothatS+y#S.

Finally, S + x and S +y are non-zero elements of R/S which is a field.
Hence 3 anon-zero element S+ z € R/S s.t.
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(S+y)(S+2)=8+k
[We may take S+ z=(S +y)-! (S +x)]
(S+y)(S+2)=S+x =>S+yz=S+x
=yz-xeSc¥
=>yz-xe¥S.
Also y e §',z€e R; S'isanideal of R > yz € S'.
Again yzeS',yz-xeS' =Dyz—-(yz-x)e S’ =>x S’
[For (S', +) isa subgroup of §]
Thus,anyx e R=>x e S".
Hence RS,
S'is anideal of R = S’ ¢ R,
S"cR,Rc S = S"=R. Hence S is maximal in R.
Theorem 5.22. Let S be an ideal of a commutative ring with unity
element. Then R/S is an integral domain iff S is prime.

Proof. Let S be an ideal of a commutative ring R with unity element so
that the quotient ring R/S is commutative and has unity element. Leta, b
R be arbitrary. We know that a commutative ring with unity is an integral
domain iff it has no zero divisors.

To prove that R/S is an integral domain iff S is prime, i.e., to prove
that R/S has no zero divisors iff S is prime, 1.e. is prime iff

(S+a)(S+b)=S=>S+a=S$, or S+bh=§,
Suppose S is prime. Then
(S+a)(S+b)=S =S+ab=§
= abe S
—a €S or beS. ForSisprime
=S+a=SorS+b=8.
Conversely suppose

(S+a)(S+b)=S=>S+a=SorS+b=5 ~(D
From (1), S+ab=S =3S+a=SorS+b=8§.
1.E. . abe S=>aeSorbes.

Hence S is prime.

Theorem 5.23. Let R be a commutative ring with unity. Then every
maximai ideal of R is a prime ideal.

Proof. Firstly we shall prove a lemma.

Lemma. Let S be an ideal of a commutative ring with unity element.
Then R/S is an integral domain iff S is prime.

Prove it as in Theorem 5.22.

Now we come to the proof of the main theorem. Let R be a commutative
ring with unity element. Let $'be a maximal ideal of R. Then R/S is a field.
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(Refer Theorem 5.21). Every field is an integral domain.

Hence R/S is an integral domain. Now applying the lemma, we find
that S is a prime ideal.

The converse of this theorem is not true, because every prime ideal is
not necessarily a maximal ideal.

Example 5.11. [f R is a finite commutative ring (i.e., has only a finite
number of elements) with unity element, prove that every prime ideal of R
is a maximal ideal of R.

Solution. Let R be a finite commutative ring with unity element and
let S be a prime ideal of R.
S is prime ideal = R/Sisan integral domain. (Refer Theorem 5.22)
Also R is finite.
= R/S is a finite integral domain
= R/S is a field (Refer Theorem 4.4)
= S is maximal ideal of R, by Th. 5.21.

Example 5.12. If A, B are two ideals of a ring, then the product

n
AB= Zaibi a; eA;by B
b=
where n is a positive integer, is an ideal of R. Hence show that
ABc AnNB.

An Alternate Statement. If S and S, are two ideals of aring R, then
the set of all elements of the form b,b, + €y + ... + [}1,, where
by, ..., /; € S, and by, ..., 5 € S,, is an ideal of R

Solution. Suppose S, and S, are ideals of a ring R so that

(1) S, and S, are additive subgroup of R.

(i) b; e S, re R=>byr, rb; € S,.
and b, €S,,re R=>b,r,1b, € S,.

Let S =58

S=biby e+ iy by, ey, € Sand by, ¢y, .y Ly € S5}

Let X,y € S be arbitrary, then we can write.

X=bbytec,+..+ 10,

YZPiP2 T 49y T 0y,
where BisCy wensbysPpsGss wly &8,
and by, €35 oy 15,P22055 -y Uy € S,

(i) To prove that S is additive subgroup of R,

For this we have to show thai-x, ye S=>x-yeS

x=y =(by e+ L)~ (pipy + 941Gy + -+ uju,)

=Ooby eyt LT (=P py (=) gy (-0 uy,
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The condition (i) says that
PirQps s Uy € Sy = =Py, —qy, ..., — Uy € S

Now bpcp =P —9q;, -, — €S,
and D5 €35 g by Bz Tz sovs u, € S,

By def. of S,

byby *eje + ot L+ (=P Py +(—q) gy + .+ (~u) (u) € S
1 6 X—-yeS.

(iv) Toprove reR,xeS =1X, xr € S.
X =r[bby+eic, +.. +1,4]
=(rby) by +(rc)) ¢, + ... (t/,) L.
According to the condition (ii),
e Rand b6 . Iy B 5 =5 rb,, rcy, ..., rl, € §,
Also b,,c,, ..., L, eS§,

= (b)) by + (re,) e, +... + (ri)l, e S

ZHERIE.
Similarly  xr=b, (b,r) + ¢, (cor) + ...+ 1, (r).
According to (ii),
reRandb,,c,, ..., €S, = byr, €5y oy Lr € S,

= by (byr) +¢y(cyr) + ...+, (Ir)eS

= XreS.
The conditions (iii) and (iv) say that S is an ideal of R.
Remains'to prove that 35, 8,nS,.

Lets € S, be arbitrary, then we can write

n
S=_Zlaibi, wherea, e S;,b, € S, Vi.
k=

a, €S =a ek
a, € R,b; €S, @>apb, € S, by def. of ideal.
b, e S, = b, e R.
3, € S;,b;e R = ab, € S|, by def. of ideal.
ab;eS;,ab €S, =ab e85 NS,
S|, S, are ideals of R = S, N S, is ideal of R
= §; M S, is additive subgroup of R.

n
Therefore ab, e S, NS, Vi=s= _a ab, € §; NS,
Thus anys € §,S, =>s e S NS,
Hence 5;5,c8§,nS,.

Example 5.13. Find tHe principal ideal generated by 5, in the ring of

<
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integers. 3

Solution. The ring of integers is a commutative ring with unity.
Hence

(5) = {Sx:x e Z}
={0,+5,£10,%15,+20, ..},

Example 5.14. Let R be the ring of all real valued continuous functions
on the closed interval [0, 1]. Let

M={j(x)eR:f[%)=O}.
Prove that M is maximal ideal of R.

Solution. (i) To prove that M is additive subgroup of R. Let f{x), g(x)

/
€ M be arbitrary, thenjk%) = )= g( %-]

1 1) _ -
AL)-8(L)=0-0-0.
Thus fx), g(x) e M = f{x) —g(x) € M. (1)
This proves the result (i). '

(i) Letf(x) e R, g(x) € M, then g(zi) =0,
oo ADe(D oo
D220

Thus f{x) € R, g(x) € M = fx) g(x) € M and g(x) x) € M. ..(2)
From (1) and (2), it follows that M is an ideal of R.

(111) To prove that M is maximal ideal of R. Let 3 an ideal U of R 5.t. M
c Uand M = U. There 3 g(x) € U ana 2{x) ¢ M so that g(—;—) = a0,
Write Sx)=g(x)—a 3}

Then/{%) =g (-é—) —a=a-a=0, showing there by
fxX)eMciisrfx)eU.

Finally, - A eUgx)eU.
This = g(x) — f(x) € U, by def. of ideal

DaelUby@)>l=aalelU=1eU
anyh(x) e R = h(x)eR,le U= lh(x)e U

= h(x) € U.

RcU. ButUcR,
Combining the two, R=U.
Thus any ideal U containing M =>U=R,
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Hence M is a maximal ideal of R.

Example 5.15. Show that the set of integers is a subring but not an
tdeal of the ring of rational numbers. .

Solution. Recall that a subset S of aring R is a subring if
a,beS=>a-beS abes.

Since difference and product of two integers is an integer and therfore
a,beZ=>a-beZ abeZ

Also £,

These facts imply that Z is a subring of Q.

By def. ofiideal, Z is an ideal of Q if

qeQ,aeZ=>qa aqe Z.
This 1s not satisfied. For product of an integer and a rational number
is not always an integer

[5 eZ,-2 EQ:?SX—?"-GEZJ.
16 16

Hence Z is not an ideal of Q.

Example 5.16. Show that the set of rational numbers is a subring but
not an ideal of the ring of real numbers.

Solution. Evidently Q=R.

a,beQ=a-beQ,abeQ

[For difference and product of two rational numbers are rational numbers].

Therefore Q is a subring of R.

Now Q will be an ideal of R if

reR,ae Q=areqQ,

i.e. product of a rational number and a real number is a rational number.

This condition is not satisfied in general.

For ﬁER,g—EQ‘-Dg'X 3¢Q.

53

Hence Q is a subring but not an ideal of R

Example 5.17. Show that the ring ({[0], [1], [2], [3], [4]}, *g, X¢) has
no proper ideals. \

is not a rational number.

Since

Solution. Since the given ring is a field and a field has no proper
ideals. In particular the given field has no proper ideals. It can be easily
verified as follows -

Let R = {[0], [1], [2], (3], [41},
0) = {0}. v
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(1) ={1 XgX X € R}
={1x5[0], 1 x,[1],1 Xs[2], 1 x5 [3], 1 x,[4]}
={[0L, [1], [2], [3], [4]} =R.
Similarly (2) = {2%[0],2x,[1],2 X5 [2],2 x4, [312 x4 [4]}
= {10}, 21, [41. [1, [31} = {[0], [1], [2], [3]. 4}} =R
(3) ={3 x5 [0],3 xs[1],3 Xs[2],3 xs[3],3 xs [4]}
={[0}, [3], [1], [4], [2]} = {[0], [1], [2], [3], [4]} =R.
(4) =R.
Finally, 0) ={0},(D=2)=B)=@)=R.
Example 5.18. [fais anelement of a ring R, show that
S={xeR:ax=0)
Is-a right ideal of R.
Solution. To prove the required result, we have to show that
(i) (S, +)is additive subgroup of R, i.e.,
X, YES>x-yeS.
() reR,xeS=xres.
) x,yeS= ax=0,ay=0=>ax—ay=0-0=0
=a(x-y)=0,x—-yeR
[Forx,yeS=x,ye R=>x-yeR.
Also (R, +) is a group].
= X -y € §, by construction of S.
(i) reR,xeS =re R,ax=0=a(xr)=(ax)r=0.r=0
=a(xr)=0,xre R
=xre S.
Example 5.19. [ A is a left ideal of a ring R,
and AMA)={xeR:xa=0VacA}.
then A(A) is a two sided ideal of R.
Solution. To prove that A(A) is an ideal of R, we have to prove that
() X(A)is aadditive subgroup of R.
Le., b;,b, € A(A) = b, - b, € A(A).
(i) beA(A),x € R=>bx, xb e A(A).
Now ¥V b;,be MA)=bja=0=b,aVaeAand b,,b, € R
= (b;~by)a=0VaeA
and b, - b, € R
= b, - b, € A(A). Hence (i).
beA(A),xeR =b,xeR s.t. ba=0 Yae A
=>xb €R s.t. (xb)a=x0=0VYaec A
= xb € A(A).
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Againx € R,ae A = xa € A. For A is left ideal.
b e A(A), xa € A=>b(xa)=0 = (bx)a=0 Vae A
= bx € A(A).
Finally, b'e A(A),x € R = bx, xb € A(A). Hence (ii).
Example 5.20. If S is an ideal of a ring R and
[R:S]={xeR:xeS VreR},
then prove that [R : S] is an ideal of R.

Solution. To prove the required result, we have to prove that
(i) [R:S]isanadditive subgroup of R, i.c.,

X, ye [R:S]=>x-ye[R:S]

(i) xe[R:S],reR=rx,xre[R:S].

Obviously X,ye[R:S] @®>mxeS,ryeSVreRandx,ye R
=rXx—ry € S. For S isideal.
=>r(x-y)eSVreRandx-yeR
= x -y € [R:S§]. Hence (i).

x€[R:S],seR=>rxeSandx,seR VYreR
S(M)s=r(xs)e S
VreRandxs eR
For S is ideal.
= xs € [R:S], by def. of [R : S].

Again Xxe[R:S],seR=rxeS VreR
= in particular, sx € S. Fors € R.
=r(sx)eS VreR. ForSisideal.
= sx € [R: S], by def. of [R : S].

Finally, x€[R:8],s e R =>sx,xs € [R:S]. Hence (ii)

Example 5.21. The set S of all 2 x 2 matrices of the form [; g} with

a, b as integers, is a left ideal but not right ideal in the ring of 2 x 2
matrices with elements as integers.

Solution. Let A = [E g:| B = [; g] be any two elements of S, then

a, b, ¢, d are integers so that a — ¢, b — d are also integers,
_la-c 0
A_B*[bvd O} €S
T A;BeS=>A-BeS.
Hence S is a additive subgroup of R.

[}
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"

« .
LetC= iy 3; be any element of R ;thenx,y, z, w € Z.
_-x y|[a 0 | ax+by 0
CA“_Z W [b 0}_’:az+wb UJES
For ax +by,ax+wb e Z.
Thus CeR,AeS=CAeS.

Therefore S is a left ideal of R.
Remains to prove that S is not a right ideal of R.

(1 0] 11
Now _1 O_ESMd{O 1:|ER
1 071 1 11
and 1 0_[0 1]‘[1 1}ES'

For the second column is non-zero. This declares that S is not a right ideal
of R.

Example 5.22. The set S of all 2 x 2 matrices of the form [3 g} with

a, b as integers is a right ideal but not a left in the ring of all 2 x 2
matrices with elements as integers.

00
Thena,b,c,d e Zsothata—c,b—-de Z

A—B:[a‘c b‘d]es.

Solution. Let A = [a b:l ; B [c g] be arbitrary elements of S.

0 0

" A BeS=>A-BeS.
This = (S, +) is subgroup of R.

LetC= [x Z] be any element of R.
y w

._[a b][x 27 Tax+by ax+bw
AC:[O 0][;,» wi[“[ 0 0 ]ES'

e, AeS,CeR=ACE€eS.
Conseqguently S is a right ideal of R.

(11 I 1
Now 0 o}es’[l 1]ER

(AT of FE 2
and 1 1“0 0}{1 1}ES’

showing thereby S is not a left ideal of R.
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Example 5.23. Give an example of a ring R, right ideal 4 and a left
ideal B such that A A B is neither left nor a right ideal of R.

Solution. Consider the ring R of 2 x 2 matrices whose elements are
real numbers,

a b

Case I. Let A be the set 0f 2 x 2 matrices of the form [0 0

] , Where

a, b are real.
Prove as in example 5.22 that A js right ideal.

Case Il. Let B be the set of 2 x 2 matrices of the form {E g:, , Where

a,b are real.
Prove as in example 5.21 that B js left ideal.
Case IIl. Take C= A N B. Then C is the set 0T2 x 2 matrices of the

form [3 gJ , Where a is real.

Let P=[; IIJ andC,=[1 O],thenPeRandCleC.

=3 2]l 3 &Jec.

This = C is not right ideal

e[ 1[4 9! e

This = C is not left ideal.
Hence C is neither left nor right ideal of R.
Example 5.24. Show that S is an ideal of S + T, where S is any ideal of
R and T is any subring of R. [LA.S. 96]
Solution. Let S be an idea] and T be a subring of R s0 that
(1) Sisadditive subgroup of R, i.e.,
a,beS=a-bes
(i) aeS,re R=ra ar e S.
(i) a,be T>a-beT
(v) a,be T=abeT
Letx,y € S+ T be arbitrary. Then3s, s’ € S and Lt'eT
5.1. X=s+t,y=s"+1¢.
Now X=y =(s+t)—-(s"+1)
={5=48") ¥ @t
For (R, +)isan Abelian group.
€ S +T, according to (1) and (iii).
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Hence X, yeS+T=>x3yeS+T (1)
Xy=(s+t)(s"+t')=ss"+st' +ts' +tt' -(2)
s,8" € S=> s’ € §, by (ii).
Lt'eT>tt e T, by (iv).
According to (ii)
s, s’ e‘Sandt,t'gR::st',ts'E S
= st' +ts’ € §, by (i)
Also ss'e S
ss” +st’' +ts’ € §, by (i)
= (ss"+st+is)+tt' € S+ T,
X,YeES+T =>xyeS+T ..(3), by (2)
(I)and (3), >S+Tisa subring of R.
Anyse S =s5eS,0eT.
[ForTisasubring of R=>0¢€T]
=s+0e8+T
=>seS+T.

This =ScS+T.
S+Tisasubri_ngofR =3+ [N R
Finally, Sc84+TcR.

Also S + T is a subring of R ans S is arideal of R.
This = S is an ideal of S + T.

0 b

with a and b as integers, forms a subring of the ring Rof all 2 x 2 matrices
with elements as integers. Also prove that S is neither left nor right ideal

of R.

Solution. Let A= [a 0] and B = ’:c SJ be any two elements of S,

Exmaple 5.25. Show that the set S of all matrices of the form [a 0]

0 b 0
Thena,b,c,d € Zsothata~c,b~d e Z.

Fa—g @ 7
Now A-B = 0 b_d_eS.

[a 0][c 07 ac 0
AB= g b}{ﬁ dﬁ_[() bd]es'

Thus we have shown that

A, BeS=>A-BeS, AB e S.
Also obviously S = R.
This declares that S is a subring of R.
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"1 011 2 1 2
Since [0 2“:3 4]=|:6 S:IES.
This = S is not a right ideal of R.

5 ilo )3 s

This = S is not a left ideal of R.
Finally, S is neither left nor right ideal of R.

Example 5.26. If m is a fixed integer, the set S = {mx : x € Z} is an
ideal of the ring of integers.
Solution. Let x, y € S be arbitrary, then
X =mx,,y=my, forsome x,,y, € Z.
X—y =mx,—my,=m(x,-y,) € S.
[Forx,,y, € Z=>x, -y, € Z],
Le; Xx—yeS.
Letr € Z. Then x =r(mx,) = m(rx,) € S.
[Forr,x;, € Z = 1x, € Z and Z is a commutative ring].
1€ rx € S. Also xr = rx.
Thus X,y eS=>x-yeS,
reZ,x e S=>rx,xreS.
Hence S is an ideal of Z.

Example 5.27. An ideal S in a ring R is necessarily a subring of R.

Solution. Let S be an ideal of a ring R so that :
(1) (S, +) is additive subgroup of R,

1.8 a,beS=>a-bes | (1)
(1) aeS,beR=>abeS, baes.
In view of (ii), a,b € S= ab, ba € S. ~(2)

The statements (1) and (2) prove that S is a subring of R.

Example 5.28. The set E of even integers is an ideal of the ring of
integers.

Solution. E={2x:xeZ}. _
Replacing m by 2 in Example 5.26, we shall get the required result.

6. Homomorphism of rings.

Definition 6.1. Homomorphism into. A mapping f from a ring Rinto a
ring R’ is said to be a homomorphism of R into R' if

(i) f@a+b)=f(a)+f(b)Vva,beR.
(i) f(ab)=f(a)f(b)foralla,b e R. (GKP., 2005, 2007)
Definitions 6.2. Homomorphism onto. A mapping f from a ring R-
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onto aring R’ is said to be a homofnorphfsm of R onto R’ if
(i f(a+b)=f(a)+f(b)V,a beR.
(i) f(ab)=1f(a)f(b)forall,a,b e R.
Also then R’ is said to be a homomorphic image of R.
Theorem 6.1. If fis a homomorphism of a ring R into a ring R, then

() £(0)=0", where 0 is the zero element of the ring R and 0’ is the
zero element of R'.

() f(-a)=-f(a)VaekR. [GKP, 2005]
Proof. (i) Leta e R. Then f(a) € R’. We have
f(a)+0' =f(a) [ 0" is the additive identity of R’]

=f(a+0)=f(a)+£(0).
Now R’ is a group with respect to addition. Therefore
f(a)+0" =f(a)+f(0)
= 0'=f(0). [by left cancellation law].
(1) Letabe anyelement of R. Then-a e R.
We have 0'=f(0)=f[a+ (-a)] =f(a)+ f(-a).
- f (-a) is the additive inverse of f (a) in the ring R’. Thus
f(—a)=~f(a).
Theorem 6.2. Let ¢ be a homomorphic mapping of aring R into aring
R'. Let S’ be the homorphic image of R in R'. Then S’ is a subring of R'.
[GKP, 2001]
Proof. Since S” is the image of R in R’ under the mapping ¢,
therefore’ ¢ (R)=§8"cR'".

Leta’, b’ be any two elements of §'. Since S’ = ¢ (R), therefore there
exist elements a, b € R such that ¢ (a) =a’, ¢ (b)=b".

We have a’—b' =¢ (a)- 9 (b) = ¢ (a-b).
[ ¢ is a homomorphism]
Now a—b € R is such thata’ - b’ = ¢ (a —b). Therefore

a’'—b" e S'.
Further a’'b’ =¢(a) ¢ (b)=¢ (ab) € S, since ab € R.
Thus a’',b’eS'=a'-b’'eS'anda’'b’ € §'.

Therefore S’ is a subring of R’.

Definition 6.3. Kernel of a ring homomorphism. [ffis a homomorphism
ofaring R into a ring R’, then the set S of all those elements of R which are

mapped onto the zero element of R’ is called the kernal of the homomorphism
f

Thus if fis a homomorphism of R into R’, then S is the kernel of fif S
={x e R: f(x) =0, where 0' is the zero element of R’}.

Theorem 6.3 If f is a homomorphism of a ring R into a ring R’ with
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kernel S, then S is an ideal of R. [GKP, 1985, 2003, 2005]

Proof. Let f be a homomorphism of a ring R into a ring R". Let
0, 0’ be the zero elements of R, R’ respectively. Let S be the kernel of f. Then
S={xeR:f(x)=0}.

Since f(0) = 0’, therefore at least 0 € S. Thus S is not empty.

Leta,be S. Thenf(a)=0', f(b)=0".

We have f(a-b) =f[a+(~b)]=f(a)+f(-b)

=f(a)—-f(b)=0"-0'=0".
S.a—b e S.

Also if r be any element of R, then

f(ar)=f(a) f(r)=0"f(r)=0"
and f(ray=f(r)f(a)=f(r)0'=0".

s.are S, raeS.

Thusa,be S,reR=>(a-b)e S,are S,rae 8.

~. Sisanideal of R.

Theorem 6.4 The homomorphism ¢ of a ring R inte a ring R’ is an
isomorphism of R into R if any only if I (¢) = {0}, where I ($) denotes the
kernel of ¢.

Proof. Let ¢ be a homomorphism of aring R into aring R'. Let 0, 0 be

the zero elements of R, R’ respectively. Let S =1(¢) be the kernel of ¢. Then
S is an ideal of R and

S={aeR:¢$(a)=0"}.
Suppose ¢ is an isomorphism of R into R’. Then ¢ is one-one.
Leta € S. Then

¢ (a)=0 [by def. of kernel]
= ¢ (a)=¢(0) "¢ (0)=0]
=>a=0, [ ¢ is one—one]

Thusa e S=>a=0. In other words 0 is the &,only element of R which
belongsto S. Therefore S = {0}.

Conversely suppose that S={0}. Then to prove that & is an isomorphism
of R into R' i.e., to prove that ¢ is one-one.

Ifa,be R, thend (a)=¢ (b)

=¢@)-H(b)=0" [ & (a), § (b) are in the ring R']
=¢(a—-b)=0" [ ¢ is a homomorphism]
—>a—-beS [by def. of kernel]
—=>a-b=0 [ S={0}]
Sra=D,

~. ¢ is one—one. Hence ¢,is an isomorphism of R into R".
Theorem 6.5. Suppose R is aring, S an ideal of R. Let fbe a mapping
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from R to R/S defined by f(a) =S +a V a e R. Then fis a homomorphism of
R onto R/S. (GKP. 2006)
Proof. Consider the mapping f: R — R/S such that
f(a)=S+aVvaeR.
LetS + x be any element of R/S. Thenx € R.
We have f(x) =S + x. Therefore the mapping fis onto R/S.
Leta,b € R, Then
fa+rb)=S+(a+b)=(S+a)+(S+b)=f(a)+f(b)
Also f(ab)=S+ab=(S+a)(S+b)=1f(a)f(b).
fis a homomorphism of R onto R/S.
Thus every quotient ring of a ring is a homomorphic image of the
ring.
" Theorem 6.6. Fundamental theorem of homomorphism of rings.
Every homomorphic image of a ring R is isomorphic to some residue
class ring (quotient ring) thereof. (GKP 2007)

Proof. Let R’ be the homomorphic image ¢t a ring R and f be the
corresponding homomorphism. Then f is a homomorphism of R onto R'.
Let S be the kernel of this homomorphism. Then S is an ideal of R. Therefore

R/S is a ring of residue classes of R relative to S. We shall prove that
R/S=R".

Ifa € R, then S +a € R/S and f (a) € R'. Consider the mapping
¢ : R/S = R’ such-that

b(S+a)=f(a)¥aecR.

First we shall show that the mapping ¢ is well defined ile., ifa,b € R
and S+a=S+b, then ¢ (S +a)=¢ (S+b).

We have S a=8+b

=>a—-beS

= f(a-b)=0’ [i.e. zero element of R']

=fla+(-b)]=0=f(a)+f(-b)=0=f(a)-f(b)=0"

= f(a)=f(b)= ¢ (S+a)=¢(S+b).

=, ¢ is well-defined. o

¢ is one-one. Wehave ¢ (S+a)=¢ (S +b)

= f(a)=f(b)=f(a)-f(b)=0'

=f@)+f(-b)=0=f(a=b)=0

—>a-beS [.- Siskemneloff]

=iy FA=ERE b

~. ¢ 1s one-one.

¢ is onto R'. Let y be any element of R’. Then y = f (a} for some
a € R because fis onto R. Now S +a ¢ R/S and we have ¢ (S+a) ="
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(a)=y. Therefore ¢ is onto R".
Finally we have
¢[(S+a)+(S+b)] =¢[S+(a+b)]l=f(a+b)
= f(a)+ f(b) = (S+a)+¢ (S +b).
Also ¢ [(S +a) (S+b)] =¢ (S +ab)="f(ab)=f(a) f(b)

=[6(S+a)] [¢(S+b)].
.. ¢ 1s an isomorphism of R/S onto R’.
Hence R/S=R".

Ex. 6.1 Show that every homomorphic image of a commutative ring
Is commutative.

Solution. Let R be a commutative ring. Let fbe a homomorphic mapping
of RontoaringR’. Then R’ isa homomorphic image of R.

Leta’, b’ be any two elements of R’. Then f(a)=a’, f(b) =b' for some
a, b € R because fis onto R’. We have
a'b’=f(a)f(b) =f(ab)
= f(ba) [ R is commutative]
=f(b)f(a)=b'a’.
. R" is a commutative ring.
Ex. 6.2 If R is a ring with unit element I and g is a homomorphism of
R onto R, prove that ¢ (1) is the unit element of R". (GKP. 2006)
Solution. Since ¢ is a homomorphism of R onto R’, therefore R" is a
homomorphic image of R. If 1 is unity element of R, then ¢ (1) e R'. Let a’

be any element of R’. Then a’ = ¢ (a) for some a R, since ¢ is onto R*. We
have

o(Da"=¢(1)¢(a)=0¢(la)=¢(a)=a'
and Ao ()=¢@¢(1)=6¢(al)=¢(a)=a".
" ¢ (1) isthe unity element of R".
Ex. 6.3. If R is aring with unit element | and § is @ homomorphism of

R into an integral domain R’ such that kernel of g ie., I(¢) #R, then
prove that ¢(1) is the unit element of R”,

Solution. ¢ is a homomorphism of a ring R into an integral domain R’.

Then kernel of ¢
=I(¢)={x:xeRand$(x)=0'e R'}.

Since I (¢) # R, therefore there exists an element a € R such
that : p(a)=0" R

We have ¢ (1) ¢ (2) = ¢ (1a) = ¢ (a).

Now let b’ be any element of R’. We have

6 (a) b = ()b
= ¢ (1) ¢ (@b =¢(a)b [ 6 (1) ¢ (a) = § (a)]
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=¢@[(DbT=0(a)b’
[~ $ (1), ¢ (a) € R which, being an integral
domain, is a commutative ring]
=¢@[$(1)b]-¢ (@b =0
=¢@[OM)b -b]=0
=¢(1)b'—b"'=0 !
[ ¢ (a) # 0'and R’ is without zero divisors]
=¢(1)b'=b"=b" ¢ (1). ["R’is a commutative ring]
Thus ¢ (1) b"=b'=b" ¢ (1) Vb’ € R".
. ¢ (1) is the unit element of R’

Ex. 6.4. Prove that any homomorphism of afield is either an isomorphism
or takes each element into 0.

or
Show that a field has no proper homomorphic image.

Solution. Let ¢ be a homomorphism ofa field F into a ring R. Let S be
the kernel of ¢. Then S is an ideal of the field F. We know that a field has no
proper ideals. Therefore either S=F or S={0}.

If S=F, then by definition of kernel of ¢, we have ¢(x)=0 V x e F. Thus
in this case ¢ takes each element of F into the zero element of R. In other
words in this case ¢(F) is the zero subring of the ring R.

If S={0}, then the kernel consists of zero element alone. So in this

case ¢ 1s an isomorphism-of F into R. [See theorem 6.4]. Since the isomorphic

image of a field is a field, therefore in this case ¢(F) is a field isomorphic to
the field F.

7. Field of Quotients of An Integral Domain.
Definition 7.1. A field F is said to be the quotient field of an integral
domain R if
() FcR.
(i) F'isthe smallest field containing R, i.e.,
~YF>oRstFisafield=>FcF.

Example 7.1. Q is the quotient field of the integral domain Z of integers.
Definition 7.2. A ring R can be embedded in a ring R’ if 3 a ring

isomorphism f: R —2%% 5 §* S’ being a subring of R’,

, R’ is called an extension of R if R can be embedded inR'. Alsothen f
is called embedding of R into S’.

Definition 7.3. Let R be a ring. Then the set
{a/b:a,be Randb =0}
is called the set of quotients of R.
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Theorem 7.1. A ring R without unity element can be embedded in a
ring with unity.
Proof. Suppose R is a ring without unity element and Z is a ring of
integers. Also suppose
R'=RxZ={(a,b):aeR,beZ}.
Let (a,m), (b,n), (¢,p) € R’ be arbitrary, then
a,b,ce Randm,n, p € Z.

We define the operations of addition and multiplication on R’ as
follows :

(a, m)+(b,n)=(a+b,m+n) (1)
(a, m) (b, n) = (ab + na + mb, mn) R 1
Sincea,be Randm,neZ =a+beR,m+neZ
= (a,m) + (b, n) € R’, by (1)
Since a,ae R—>at+aeR=>2aeR.
Hencea,be Randm,ne€ Z = ab,na,mb e Rand mn ¢ Z
= ab+na+mbe Randmn e Z
=> (ab + na + mb, mn) € R’
= (a, m) (b,n) € R’ by (2).

Thus we have shown that R’ is closed w.r.t. addition and multiplication
defined as above.

To prove that (R’, +, -) is a ring with unity.

I. Commutative law for addition. (a, m) + (b, n) = (b, n) + (a, m).

Since (R, +) and (Z, +) both are commutative groups and so

(a,m) +(b,n)=(a+b, m+n)=(b+a,n+m)=(b,n)+(a, m).

2. Existence of zero element. (0, 0) € R’ is the additive identity, where

the first zero is the zero of R and the second zero is the zero of Z. For
(0,0)+(a,m)=(o+a,0+m)=(a, m).
3. Existence of inverse.(—a,—m) € R’ is the additive inverse of (a, m)
e R". For aeRmeZ=>-ae R,-meg2Z and
(a,m)+(-a,-m)=(a-a, m-m)=(0,0)=zero of R’
4. Associative law of addition.
((a, m) + (b, n)] + (c,p) = (a,m) + [(b,n) (+¢,p)]

ForLHS. =(a+b,m+n)+(c,p)=([a+b]+c, [m+ n]+p)
=(a+[b+c],m+[n+p])=(am) +[(b,n) + (c,p)]
=R.H.S.

5. Associative law of multiplication.

[(a, m) (b, n)] (c,p) = (a, m) [(b, n) (c, p)]

For LH.S. =(ab + na+'mb, mn) (¢, p)

= (abc + nac + mbc + pab + npa + mpb + mnc, mnp)
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and RHS. =(a,m)(bc+pb+nc, np)’l

=(a[bc + pb + nc] +m [be + pb + nc] + npa, mnp)
= (abc + pab + nac + mbc + mpb + mnc + npa,mnp)
= (abc +nac + mbc + pab + npa + mpb + mnc, mnp)
= LS.

6. Distributive law.

(@, m) [(b,n) + (c,p)] = (a,m) (b,n) + (a,m) (c,p)

ForLHS. =(a,m)(b+c,n+p)
=(@[b+c]+m[b+c]+[n+pla,mn+p])
=(ab+ac+mb + mc¢ + na+ pa, mn + mp)

R.H.S. =(ab+mb + na, mn) + (ac + mc + pa, mp)
=(ab+mb+na+ac+mc+pa,mn+mp)
=(ab +ac + mb + mc + na + pa, mn + mp)
=[HS5.

Similarly we can prove the other distributive law.

7. Existence of Unity Element. (0, 1) € R' is unity element.

For (0, 1) (3, m) =(0a+ la+0m, Im) = (a, m).

Take S'=Rx{0}cRxZ=R’'sothatS'cR.

To prove that S’ is a subring of R".

Let(a,0), (b,0) € S' be arbitrary.

Now (a,0)=(b,0) =(a—b, 0) € S’
and (a,0) (b, 0) =(ab+ 0b+ 0a, 0)
=(ab,0) e S'.

Hence S’ is a subring of R".
Defineamap f:R—S' =R x {0} s.t.
f(a) =(a, 0).
f is one-one.
For f(a) =f(b) = (a,0)=(b,0) > a=b.
fis onto.
For given any (a, 0) € $' = a € Rs.t. f(a) = (a, 0).
f preserves addition and multiplication compositions.
fla+b)=(a+b, 0) =(a,0)+ (b, 0)=f(a)+ f(b).
f(ab) = (ab, 0) =(a, 0) (b, 0) = f(a) f(b).

Thus 3 an 1somorphism f : R —2M%; §* and ' is a subring of R’

which is a ring with unity,
. By def., R can be embedded in R".

Theorem 7.2. If R is an integral domain, then it is possible to construct
a field (quotient field) from the elements of an integral domain and this
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quotient field will contain a sub-system D isomorphic to R.

or
An integral domain can be embedded in a field. [GKP, 2005]

Proof. Let R’ denote the set of non-zero elements of the integral

domain R. Form the cartesian product

RxR'={(a,b):ae R,beR'}.

Define arelation~ on R x R’ as follows :
(a,b) ~ (c,d) iff ad = be.

Let (a, b), (c, d), (g, h) be arbitrary'elements of R x R’. This relation is

reflexive : (a,b)~(a, b). Forab =ba.

symmetric : (a, b)~(c,d) = (c,d) ~ (a,b)

For (a,b)~(c,d) = ad = be
= cb=da. For (R, -)is commutative
= (¢, d)~ (a, b).

[ransitive: (a, b) ~ (¢, d), (c,d) ~ (g, h)

. = (a, b) ~ (g, h).

For (a,b) ~(c,d),(c,d) ~ (g, h) => ad = be, ch=dg
= adh = bch, bch = bdg = adh = bdg
=d(ah-bg)=0=2ah-bg=0

Ford # 0 and R has no zero divisors.
= (a, b) ~ (g, h).
Hence ~ is an equivalence relation.

Now this equivalence relation ~ wil] partition the set R x R’ into

mutually disjoint equivalence classes. Denote the equivalence class containing
(a, b) by % . Then, by definition,

%: {(x,y) e RxR': (x,y)~ (a, b)}.

Let F be the family of all equivalence classes thus obtained.
Then ' F={%:(a,b) eRxR'}.
Here F is called set of quotients.

et 2 E—,-g- be arbitrary elements of F.

b’ d
Obviously %: % iff (a,b) ~ (c, d), i.e. iffad = be.
a _ E '
Also b e VxeR
For abx =bax, i.e., (a, b) ~ (ax, bx).

We define the oﬁerqt-ions of addition and multiplication on F as

follows :
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b'd bd % d wd
b,de R'" = Db,d=0. Also R has no zero divisors
ad+bc ac

3
a c_ad+be 4 a.c_ac

bd E
= bd#0= i

a . ¢
:>b+derdeF

= Fis closed w.r.t. (+) and ().

First of all we are to show that these operations are well defined.
Though it appears that these definitions of addition and multiplication

depend on some particular elements. We shall show that infact there is no
such dependence.

For proving this we have to prove that if

b T d e
2is-taSag 2oL
To prove that %+%= E—: ;I, , we have to prove that
20D TEEDC iie., (ad + bo) b'd' = bd (a'd" + b'e')

Observe that

(ad +bc)b’d” =ad b'd’ + bec b’d’ = (ab”) (dd*) + (bb") (cd")
= (ba") (dd") + (bb") (dc"). For ab’ = ba’, ¢d’ = dc¢’
= bd (a'd’ + b’c’), which was desired.

. a ¢_a o
Again to prove —-—="_.— we have to prove that
© P bd b d P
ac _a'c

b—d_b'd"le ,ac.b'd"=bd.a'c".

Now ac.b'd' =(ab’) (cd") = (ba') (dc¢’)
= bd.a’c’, which was desired.
To prove (F, +, -) is a field.

(1) Fisclosed w.r.t. (+) and (-) (previously shown).

(2) Addition is commutative in F, i.e., -%—+ 3 %+%
_ad+bc_da+cb _cb+da_c¢ d
F — = = = ——t—,
B = db db d b
(3) Multiplication i1s commutative in F, i.e., %-g—: %%
For 20 40 a8

a
bd bd db d b
(4) Addition is associative in F, i.e.,
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Le,

iLe.,

deLlib 2. (o g
(b d) h b+[d+hJ'

ForLHS. —ad+bc g _h(ad+bc)+bdg

bd h bdh
_ had +hbc+bdg  had +b(ch +dg)
~ bdh - bdh
_a A ch+dg a (c g)
“vTTan cwtath

= —— e, — —

) g- € F isadditive identity of F v/ x & R,

a_ 0_ax+b0 ax
For b X bx = bx
(7) Additive inverse of any element 2 b€ Fis —»g eF.

=%. For (ax, bx) ~ (a, b).

ForgeF:oaeR,beR',:—aeR,beR':—%EF

a_=ab+ba 0 0

Let

= ;):- = unity element of F.
Hence »tl € Fisthem tlpllcatwe inverse of E

e

= =3 = - For(0,b%)~(0, x)
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(10) Distributive laws hold i
afc,El_ac . ag
b[d+hj bd b h
£c,Ela_ca g a
and (d+h)b . b+h‘b'
E §(§_+§ __E'[ch+dg]__a(ch+dg)
.l b\d "h) 5\ dh J bdh
ach+adg ac ag
bdh bd  bh
2 c.a B
_b d+b h RHS.

Similarly we can prove the other distributive law. Hence (F,+,-)1sa
field. This field is called field of quotients of the integral domain R.

‘Remains to prove that F contains a subset D s.t. D = R.

Write D = {%33 ER} .Clearly D cF.

Deﬁneamapf:D—;»Rs.t.f(%) =aVaeR.

We claim f is a ring isemorphism onto.
fis one-one:

For f(%j =f(—?');a,beR:>a=b:>%=-lI1.

fis onto.

ForanyaeR:}El-—?— € Ds.t.f[-al-J——-a.

f preserves compositions in D and R.
Let a,b € R be arbitrary. Then

(202) - o{Larle) - (28) Ly (5).(2)
(3.2)- 2)-(2)-a-(2)(2)
s ((342) (o (2) ma (38)-(2)(8).

Thus f: D — R is aring isomorphim onto. Hence D = R.

Theorem 7.3. The quotient field F of an integral domain R is minimum
extension of R to a field, that is to say any field K containing R, contains a
subfield K’ isomorphic to the quotient field of R. !

or The quotient field F of an integral domain is the smallest field of R.

(GKP., 2006)
Proof. Let K be a field containing an integral domian R. Let F be the
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quotient field of R so that

Fe= {%:a,beR and b:ﬁﬁ},

a,beRandb#0 =a,beKandb#0.ForRc K
= ab~! € K. For K is field.

Let K' be a subset of K containing elements of the form ab!, where a,
be Rs.t.b=0. '

Then K'c K. Now we shall show that K’ is a subfied of K and K’ is
isomorphic to the quotient field F,

(1) To prove that K’ is a subfield of K.
For this we have to show that

X, YyeK =x-yeK’ (1)
X, yeK'andy#0 = xy ! e K’ -(2)
X, Y€ K" @=>x=ab"!, y=cd"!, for some a,b,c,de R
s.t.b,d=0
© X —y=ab!-cd!=add!b!-cbb!d!
={ad -cb) b'dt.

For b-!'d-} = d-! b-!
= x—-y=(ad—-cb)(db)"! € K’
Forad —cb € Rand bd # 0
= x—-y € K. Whichis (1).
X,y € K'st. y20=>x=ab!,y=cd?!0forsomea,b, c,de R
s.t.,,b,d#0
= xy~! =(ab!) (¢d-1)! = ab-! d¢-!= adb-t¢-!
st b.¢.id =0
[Forcd!'#0=>¢,d=0andR is commutative.]
= xy ! =(ad) (cb)'s.t.cb #0 and ad, cb € R
= xy~! € K'. Which is (2).
(i) To prove that F =K',

Define amap f: F — K’ s.1. f(%] =ab-lVy % e F.

fis one-one.

For f(%) = f[a‘i] = ab'=cd'=ab!'b=cd'b
= ae = cbd~! = ad = ¢cbd-d = ¢h

= ad=cb=(a, bj~(c, d)

f is onto. ’
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o

For any ab~! € K' is the f image of % eFstf (E-J = ab=t,

b
a6 of8).{c
Further f(}—3-+-CTJ — f(b)+f(d).
ForLHS. =f (a-db’:jbc) = (ad * bc) (bd)"!

= (ad + be) (4! b))
= add-'b-! + bed-!b-! = ab-! + bb-l¢d-!
= ab~t + ¢cd-!

o)+ {g)-nns

=flalf £]=
- f( bj f(d) KoL, :
Hence f: F — K"is aring isomorphism onto, i.e., F = K" Proved.

Deduction. The quotient field of a finite integral domain coincides
with itself.

Proof. Suppose R is finite integral domain. Then R is a field. It means
that the smallest field containing R is R itself. Also the quotient field of R
is the smallest field containing R. Thus the quotient field of R is R itself.

Theorem. 7.4. Any two isomorphic integral domains have isomorphic
quotient fields.

Proof. Let D and D’ be isomorphic integral domians so that 3.a ring

isomorphism f;: D —2%2 5y,

Let 2, b, c. d € D be arbitrary s.t. f(a) = a’, f(b) = b, f(c) = ¢,
f(d) = d’. Also we have

fla+b)=f(a)+f(b)y=a'+ b’ (1)
f(ab) = f(a) f(b) =a'b’". il
Let F and F' be quotient fields of D and D’ respectively.
Then : F={%:a,beD and b;t()},
F= {%:-:a',b'e[)' and b'z o}-

Our aim is to show that F= F’.

Consider the mapy:F — F's.t. y (-E-) = -%,—.

Let %% € F,thena,b,c,de Ds.t. b, d 0.
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It means that f(a), f(b), f(c), f(d) e D', i.e.,
a’,b’,c',d" e D's.t.b’,d" #0.

First we shall show that the map y 1s well defined, i.e., if i;— = % ,

then y (%) =y (%) We have % = £ — ad=bec = f(ad) = f(bc) = f(a)

£
d

f(d) = f(b) f(c) = EE?}% = gs; =y (-E—) = w(—g) . Hence vy is well defined.

y is one-one.

For y [%) =y (—3—) - :;—', = £ =ad'=b'e'= f(a) f(d) = f(b) (c)
= f(ad) = f(bc) = ad = be¢. For fis one-one.

a _ ¢
:'}(a’b) (c’d):b b d -
W is onto.
Since f'is an isomorphism onto.
. Corresponding to elements 2’, b" € D’ s.t. b' # 0 we have a preimage

a,be Ds.it. b=0. Then every element 9—_— € F' has a pre-image 2 eFsit.

a 3 g g
I |

v(3)-

\y preserves addition and multiplication compositions.

4 G s ol & 5
”’[(T;') *(B’H . ‘”(b) ¥ ‘*’(d) :
) d+bc) _a'd+b'er _ fla)f(d)+f(b) f(c)
ForLHS. = (a )= =
¥ ¥\ b b'd £(0) £(d)

_f(a)f(d)  f(b)f(c) f(a) f(c)

~F(b) f(d) " f(b)£(d)  £(b) " £(d)

d
oy f39)-w(E)o(2)

= ac)_ac _a ¢ _fa),fe)-
For LHS. =y (bd) bd b d W( b)w(d) R.H.S.
Consequently v is a ring isomorphism onto, i.e., F = F'.

g

Problems.

I, Show that the set of numbers of the form a+b\/§ with a and b as
rational numbersisa ﬁeld‘.

2. Find whether the set of nﬁmbers
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s :

R = {a+bﬁ$cﬁ: a,b,ieZ}

is a ring w.r.t. addition and multiplication.
3. Find whether the set

1 |
R={a+b23 +c43 : a,b,c EQ}

is an integral domain or a field.
[HINT : It is an integral domain. Proceed similar to example 2.7.]

4. ProvethatthesetZ of integers is a ring in which addition and multiplication
are defined below indicated by © and ® respectivelya® b=a+b-—
l,a®@ b=a+b-ab,
wherea, b e Z.

[HINT : Example 2.8. Here O—element is 1 and 1-element is 0.]

5.  Show that the set

D={a+b43 : a, b € R} is an integral domain w.r.t. addition and
multiplication of numbers. Are there any elements in this domain
other than + 1, which possess multiplicative inverse ?

[HINT : Example 4.18]

6. A Gaussian integer is a complex number a + ib, where a and b are
integers. Show that the set of Gaussian integers forms an integral
domain under ordinary addition and multiplication of complex numbers.
Isitafield ?

Solution. LetR={a+ib:a b ¢ Z}, so that R is a set of Gaussian

integers. Letx=a+ibandy=c +id be arbitrary elements of R so thata, b,
¢, d are integers.

Xx+y =(a+ib)+(c+id)=(a+c)+ i(b+d)
Xy =(a+1b)(c+id) = (ac-bd) + i (bc + ad).
Since numbers in the brackets on R.H.S. of both equations are integers

and so L.H.S. of both equations are Gaussian integers. Hence R is closed
w.rt. (+) and (+).

Let z=e+if e R.

(1) (R, +) is an Abelian group. For

(Ap). Closure axion. x+y e R, (already proved)

(A,;). Existenceofidentity. 0 =0+ 10 e R is additive identity s.t.

x +0=0+Fx=%
(A;). Commutative law. x +y = y+X.
(Ay- Associative law. (x +y) +z=x+ (y +2).

Addition is commutative as well as associative in R. For (C,+)isan
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Abelian group, where
C = set of complex numbers.

({ﬁs)- Existence of inverse. x = a + ib € R has its inverse

—x=—a+i(-b)eRs.t.
Xx+(=x)=—x+x=0.

(i)  (R,,-)isnot Abelian, R, =R~- {0}. For

(B,). Closure axiom. xy € R,, already proved.

(B,). Existence of identity. 1 = 1 + i(0) € R is multiplicative
identity s.t.

(B;). Commutative law. xy = yx.
For Xy =(ac—bd) +i(bc+ad)

=(ca—db) +1i(cb +da)

=(c+1d) (a +ib) = yx.
(By). Associative law. (xy) z = x(yz).
(Bs). Existence of inverse. Ifx # 0 € R, then its multiplicative inverse

-1 _1 1
e

Xx a+1b

a - -b ]
= +1 gR
az+b2 (az+b2

are not integers.

a —-b

a? +b2 a2+ b2
(i) Distributivelaw. x(y+2z)=xy+xz,

(y +t2z)x=yx+zx.
For multiplication of complex numoers is distributive over addition.
Hence (R, +, -) is not fied as (B;) is not satisfied.
(tv) xy=0=>x=0,y=0, i.e., R has no zero divisors.
Hence (R, +, -} is an integral domain.

For

7. Ifiin aring R with unity, (xy)? = x2y? ¥ x, ye R, then prove that R is

commutative.
[HINT : Let R be aring with unity, then 1 € R. Letx, y € R be arbitrary
and
(xy)? = x%y? (D)
Xx,yeR=>1+x,1+yeR ' <i(2)

By virtue of (1), we get
[(1+x)y]2 =(1 +x)?y?
or (y +xy)* =(x*+2x+1)y?
or (y +xy) (y +xy) =x%y? +2xy? +y?
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Y2+ yxy + xy2+ (xy)? = x2y2 + 2xy? +y2,

or
Using (1), y? + yxy + xy? + x2y2 = X2y? +2xy2 + y2
Cancellation law in (R, +) gives
yXy =xy? -(3)
Replacing y by 1 + y in (2),
(I+y)x(1+y) =x(1 +y)?
or x+yx) (1 +y) =x(1+y?+2y)
or X+YX+xy+yxy =x-+xy?+2xy
or YX+yxy =xy?+xy
Using (2), = yxtxy? =xy?+xy
or yX =XY. ]
8. « Prove that a ring R is commutative iff (a+b)? = a2+ 2ab + b2
Va,beR.
9. Consider the set Z x Z with addition and multiplication defined as
follows :
(a,b) +(c,d)=(a+c, b+d)
and (a, b) - (¢, d) = (ac,bd), Va,b,c,de Z Then Z x Z forms a
commutative ring with unit element. [GKP, 1986]
10.  Prove that for any prime p, the set
Q(yp)=fa+b p :a,beq)
forms a ring under the operations of usual addition and multiplication
of real numbers. [GKP, 1985, 86, 99, PU, 1989

[HINT : (Q ‘/E, +) is an Abelian group
() for x=a+b P,y=ctd,/p QJ;,
X+y=a+c +(b+d)‘/g € QJ;,
(i) for x=a+b P,y=ctdp,z=et+f,[p e Q\/—,
(ctyrz = ((a+cre) + (b+d)+) Jp
=(@+(cre)) + (bH(d+D) fp =x+(y+2),
(i) 0=0+0/p €Q/p isthe additive identity because
x+0=(atb /p)+0=x,
(iv) for x=a+bypeQp,~x=—abp e Qp

is the additive inverse because x + (=x)=0,
(V), for x=a+bp,y=ctd p € QJE
| X +y=(atc)+ (b+d) /p = (c+a)+ (d+b) /p =y+x.
(Q ,/5, ) is a semi group
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X.y =(a+byp)(c+dyp)
= (ac+bd p) + (ad+bc) Jp € Q4fp
and VXxV¥2zeQ J; = (X .y).-z=X. (y. z) associative law holds.

Distributive laws hold forallx,y,ze Q J;
o ] (6,7 3 T W ol W
and (y+z).x=y.x+z.xinwhich

X (y+2) =(at+b |fp)[(cte)+(d+D)/p)

=ac+ae+adﬁ +af Jp +chE +beJE + bdp+bfp.
=X . ¥¥%X.Z. ]

11. Let (R, +, -) be a system which satisfies all the postulates for a ring
except that of commutativity of addition. Prove that

(1) If R contains an elements ¢ that can be left cancelled in the
sense that
ca=cb=>a=b,thenRisaring;
(i) If R has a multiplicative identity 1, then itis aring. (GKP,2000)
[HINT: (i) c(a+b)—c(b+a)
=c(a+b) + (—)(b+a)
= ca+cb+(—c)b+(—<)a
= catcb—cb—ca

=),
Hence c(a+b) =c(b+a)
Therefore at+b =b+a. (by left cancellation law)

That 1s addition is commutative in R.
Hence R is aring.

(ii) (1+1)(a+b) = 1(atb)+1(atb) (by distributive law)

= a+b+a+b (by distributive law)
Again (1+1)(a+b) =(1+1)a+(1+1)b (by distributive law)
= a+a+b+b (by distributive law)
Therefore atb+at+b =a+atb+b
so that b+a = a+b. (by cancellation laws) ]

12. "(;onsider the set R of all real valued functions defined over the closed
interval [0, 1]. Define addition and multiplication in R as follows :

(f+g) (x) = f(x) + g(x)
and (f.g2) (x)=1{x): g(x) v x e [0,1],
where f and g are any two elements in R.
Prove that R is a commutative ring with unit element.

[HINT : The zero element of R is the zero map. That is, it is the
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T -“i
constant function which has the valug zero for all x in [0, 1].
The unit element is the constant function which has value 1 for every
value of x in [0, 1]. Other axioms can easily be verified.]

13.  Consider the set R of a] real valued functions of a real variable. We
define addition and multiplication in ® as follows -
(f+8) () =10 + g(x)
and (f.8) X)) =flg®)] VigeR..

Prove that these operations define the structure of a non-commutative
ring with unit element,

[HINT : The unit element is the identity map given by I(x)=x for all
real x.

The ring is non-commutative. For, if we take
fix) = x2 and g(x) = eI,

then (f.8) (%) = flg(x)] = f(e-Ixl) = g-2l
and (80 () = g[f(x)] = g (x) = &-1X*|
so that f.g=g.f

Of course it is easy to see that (f.g) (x)=(g. ) (x) for at least x = 3.
Note the difference in the multiplication, ]

14. LetR, bethe setofall 2 x matrices whose elements are real numbers.
For any two matrices A = {aij), B = (bﬁ), define

A+B=(a;+by) and AB = (c;),
where

2
Cij =D agby
k=1

Show that under these operations R, is a ring.

This ring is called the ring of 2 x 2 matrices over the reals.
15. Whether the union of two subrings is a subring or not ? Give example -,

in support of your answer. [GKP, 2003]
16.  Prove that the direct (respectively inverse) tmage of a subring under

a ring homomorphism is a subring,

[HINT : LetSbea subring of R and Jet f(s,), f(s,) € f(S), where $1» S5
€ S.

Then f(s)) - f(sy) = fis;— s,) < f(S) and

f(s)) . f(s,) = f(s,s,) e f(8S).
Hence f(S) is a subring of R.
The other part can similarly be proved.]

[7. IfRisaringanda € R, show that
N(a)= {r e R :ar=ra)
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1s a subring of R and that the centre of R is a subring of N(a). N(a) is
called the normalizer of the element a in R.

18. Let R be a ring and a € R be a fixed element, Prove that
Ra={ra:r € R} is a subring of R. ' [GKP, 2004)

19.  Prove that the set Z; of residue classes modulo 3 is an integral domain.

20. Prove that a commutative ring with identity is a field if it has no
proper ideals, i.e. it is simple. [GKP, 84, 96, PU, 95]

21.  Give an example of an infinite commutative ring without zero divisors
which is not a field.

[HINT:<Z, +,-> ]
22.  Let R be a non-zero finite integral domain. Prove that R is a field.
5

3. Letaandb bearbitrary elements of a ring R whose characteristic is 2
and ab = ba. Then show that (a +.b)2 = a2 + b2 = (a — b)2.

[HINT : Letab=ba=x € R.
Characteristic of R 1s two = 2x =0 ¥xeR
=9 =0,

(a+b) =(a+b)(a+b)=a(a+b)+b(a+b)
=a’+ab+ba+bl=a+ (x+x)+b2=a2+0+b?
=a? + b2

(a-b)Y =(a-b)(a-b)=a(a—b)—~b(a-bh)
=a’—ab-ba+b?=a2—(x+x)+b2=2a%-0+b2

=al+b2.

Thus (a+b)?=a?+b2=(a-b)]

24, IfRisaring in which x? = x for every x in R, prove that R is commutative
ring of characteristic 2. (1.A.S. 1997)
[HINT: Let R be aring s.t.
any Xxe R=>xt=x. - (D)

To prove that
(i) characteristicofRis2,j.e,x+x=0 ¥ x eR.

(i) R iscommutative, i.e., Xy = yx Vx,yeR.

()  (x+xP? =(x+x)(x+x)=x(x+x)+x(x+x)
= (x2+x?) + (x2 + x2), by distributive law
= (X+x)+(x+x),by (1).

But (x+x)? =x+Xx, by virture of (1).

Hence X+% =+0+etx)
or (xX+x)+0 =(x+x)+(x+x).
Left cancellation law for addition in R gives 0 =x + x. -(2)

(1) Let x,y € Rbe a;biirar}'. Then
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or

25.

26.

27.

X+y =(x+y)2 by virtue 6‘1"(1)
=(X+y)(x+y)
=X(X+y)+y(x+y)
= (x2+xy) + (yx + y2), by distributive law
=(X+xy)+ (yx +y), again by (1)
=(x+y)+(xy+yx). For (R, +) is commutative
Finally, X+y =(X+y)+(xy+yx)
(X+Y)+0 =(x+y)+(xy +yx).
Left cancellation law of addition in R gives 0 = xy + yx.
Taking xy = x', yx = y', we get
X'+y'=0
X'+y'=0 =X +y'=0=x"+x, by (2)
=x'+y' =x'+x
= y'=Xx', by left cancellation law
= yx=xy]

Prove that the set of all numbers of the form a+b ‘/; is a field w.r.t.
ordinary addition and multiplication, where a, b, p are rational numbers
and p is a prime positive. (GKP., 2008)
[HINT: LetR={a+bﬁ:a,beQ}-

(R, +, -) is a commutative ring with unity element

1 +0yp = 1. Zero element being 0 + OJE. Let a + bﬁ be a
non-zero element of R so that at least one of a and b is non-zero.

Multiplicative inverse of a + b ,/E 1S

1 _ a-—b‘/; 'za—b‘/g: a
a+byp (a+b‘/5)(a_—b‘/3) a’-pb> a2 —pb?

-b
o (2 )\E R-
a® —pb
At least one of a and b is non-zero = a2 — pb2 # 0. Hence non-zero
elements of R have multiplicative inverse in R. Hence R is a field.]

Prove that the set

£, ={[0L, [11, [2, [3], (4], [5), [6]}

forms a field w.r.t. addition and multiplication module 7.

If D is an integral domain, then show that D’ = {me :m e Z} is a sub
integral domain of D. e being a unity element of D.

IfR be aring and a & R, than show that

aR={ar:r e R}isanideal of R, [GKP, 2000]
[HINT : Theorem 5.11.]



76 Abstract Algebra

29. Let R be a ring with unity element such that the only left ideals of R
are {0 and R. Show thatR is a division ring.

[Hint : Theorem 5.9]

30. IfSis anideal ofaring R, then R ~ R/S, i.e., R/S is a homomorphic
image of R.

or
Every quotient ring is homomorphic image of the ring.

[Hint : Let S bea ideal of aring R, then R/S is a quotient ring. Consequently
the map

g:R—>R/Ss.t. g(a)=8 +a.
Evidently g is well defined.
Let a, b € R be arbitrary.
(1) g is onto.
Forany R +a € R/S is g-image of a € R st. g(a)=S +a.
(i)  g(a+b) =g(a) + g(b).
For L.H.S. =gla+b)=S+(a+b)=(S+a)+(S+b)
=g(a)+g(b)=R.H.S.
(1i1) g(ab) = g(a) g(b).
For L.H.S. =g(ab)=S +ab=(S + a) (S+b)
=g(@)gb)=R.HSS.
Hence the mapg:R - R/Sisa homomorphism onto.
Therefore R~R/S.
It is the converse of fundamental theorem of rings.]

31. LetI=4Zinthe ring R = (Z, +, .). Find the elements of the quotient
ring R/I (the set of cosets of I in R). [GKP, 2005]

[HINT : R/1=2Z/4Z = {[0], [1], [2], [31}. ]

32 Examine whether the mapping f. Z-» x7 defined by (fm)=xm m V2
M€ Z Isarnng homomorphism (GKP, 2007)

-
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