(Chapter 8)

MULTIPLE INTEGRALS

§ 8-1. Double Integrals.

Let 4 be a finite region of the xy-plane and let f(x,y) be a function of the
independent variables x andy defined at every point in 4. Divide the region A into
n parts of area 4y, ........ 0A,. Let (X, y,) be any point inside the rth elementary area

n
0A,. Then the limit of the sum if it exists of £ f(x,y,) 34, when the number of

r=1
sub-divisions tends to infinity and thereby making area of each sub-division tend to
zero, is called the double integral of f (x, y) over the region A4 and is denoted by

JJrena 5

Thus fff(x y)dA = nl:imoo 2 f(xrsyr) 0A,.
oA, - 0
The region “4” is called the region of integration. The term double integral
refers to the dimensionality of the region 4. It can be noted here that this definition
corresponds to the deﬁmtlon

1
f feyax= "7 z RIOLY

x>0 (2
for the definite integral of a single variable.

§ 8-2. Tripple Integrals.

The results obtained above for two dimensions can be extended to finite regions
in three dimensions. Suppose f (x, y, z) is a function defined in a closed region R. Divide
the region into n sub-regions 6ry, dry, ...... 6r,. Let dv; be the volume of the jth region

or;. If (%, ), 2;) is any point in this region then

Lim
- o E f(x}sypzj) 5"{]

if it exists is denoted by f f f fx,y,2)dv

(171)
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and is called the tripple integral of f (x, ¥,z) over R. In this chapter we shall however
confine ourselves mainly to double integrals.
§ 8-3. Evaiuation of double integrals.

Theorem. If the region A is the area bounded by the curves y =fi (x),
Y =f2 () arnd the ordinates x = a andx = b then

(" ([ e
f‘{; f&y)dd = Ja ff ) J@,y)dy| dx

where the integration is carried with respect to y first and x is treated as constant.
Proof. Let us divide the whole region
A into elementary rectangles of dimensions
ox anddy by drawing lines paraliel the
coordinate axes. One such reccangle is shown
in the figure 9.1 by the shaded region.
Then from definition

f_!;f(x,y)dfi

Lir ; L
= ax _:no 2 f(xr,}’r) 6x 5}? (I) Oa: X BN
Sy =0 Fig. 8.1

where (¥, y,) is a point inside the rth rectangle and the summation extends to all such
rectangles into which the region is divided.

Let us consider a vertical strip POQ'P'. We first sum up all the elementary
rectangles into which this strip may be supposed to be divided. Thus we get the sum
of f (- yr) x dy over the strip POQ'P’. Let n be the total number of such strips.
Then sum of all such strips gives the sum (1).

Li
Therefore S 1_?0 2 f (% y,) 6x Sy
dy =0
L' i3 m -
= 5 1_210 b [ Zf @y) 5y} ox -.(i1)
(5y o Or =1|s=1

Where (x, ys) is a point inside the sth rectangle in the rth strip and m the number
of rectangles in the 7th strip. Summation inside the bracket is to be performed first
keeping x, constant.

Now we can write
Li 2 Y2
oo = Sy dy = _[ Gy ay oee.(i)
6}7 e Or =1 1
where y; andy, are the extreme values of y in the rth strip. Since the region A4 is
bounded below and above by the curves.

Y=fix) and y=45(x)we can take
Y1=f1 &%) and y, =45 (x)
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Therefore from (iii) we have

Lim & f2 ()

2 flon)ope= X5, V) d
(jy—:os=1f(r_.})) fl(xr)f(r}Jy
=F (%) say. (iV)
Introducing this result in (i) we have
Lim ‘ el I O R o
8¢ =0 Z flxny)oxdy = ViR Or§1ﬁ(xr) Sx
oy - (3
g b &) ]
mg: F(X) dx = i: I: fl (1’) f(x.y) dyJ dx (V)
Hence from (1) and (v) we get
{ -ﬂ g‘b 1 rf') (7{\1
A »-gq reyydi=Jg | J oyl &N G| de (V)
General practice is to omit the brackets on the right and write it simply as
,5' [ ... j‘b Ch® r
jA fey)dd = s Sa0) f,y)dedy weee(VID)

Remark 1. It can be shown in the same way that if the region is bounded by
the curves x = g; (), x =g, () andy = c andy = 4, then

£ d
fi fenyydd = .,E [f ff 83 7@ dx] dy . (vili)

1 20
- fgl(y)f(x,y)dydx

if the brackets are omitted.
Here the integration is first carried with respect y

to x treating y as a constant i.e. we sum along a horizontal
strip first. i Q
Remark 2. If the region of integration is bounded ‘J/""{’é—\
by two curves as in firuge 9.2 even then we can consider \_’/
it bounded by the four lines vy = 41X
y=hH®,y=/2)
x=@a and x=>b.
§ 8-4. Limits of Integration for [ [ f(x,y) dx dy. i
. : O a b
We have seen above that the integral is evaluated Fig. 8.2

by integrating with respect to y first treating x as constant.

In other words we first integrate in a vertical strip (strip parallel to y-axis). Limits of
this integration therefore are the values of y for the lowest and highest points of the
strip. These values are in general function of x and are obtained from the equations
of the curves bounding the strip.
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Second integration is made with respect to x which gives strip-wise summation
from the first to the last strip. Hence the extreme left value of x for the region gives
the lower limit and extreme right one as the upper limit. Examples given below make
clear the task of deciding the limits and evaluating such integrals,

2uf ¥ i)
Example 1. Evaluate A dx dy
Z Y- 2 Vior — 2
Solution. l: 'g % )dxdy = .g [y] (2 )dx

0
(on integrating with respect to
Y first, treating x as cnstant)

2 2
=_£ [v{?x—i)]dx=_£ V{x (2 —x)} dx
putting x = 25in 8, dx = 4 sin 6 cos 6 49

/2
= l: V(2 sin? 6.2 cos? 6).. 4sin 6 cos 0 d8
/2
=g sin? 8 cos2 6 46

1 1
_8T(@/2T(3/2) 8X3VE X3Vw

—

2T (3) 221

B
=
Example 2. Evaluate
ff@+y) dx dy over the region in the positive quadrant forY
which x +y < 1. B
Solution. x+y=1 is 3 straight line making
intercepts unity from the positive direction of the axes.
Hence the region of integration is the A OA4B in this case.
If we take any strip parallel to y-axis then if is bounded by
x-axis on one side for which Y =0 and by the line 4B on

the other side for which Y =1 —x. Limits of x are clrealy © A
0to 1. Fig. 8.3

1 f1-x
Hence fl; (x+y)dxdy='_£~’: x +y)dxdy
1 b
A o3, e
=J{:l {x(l—x)+-(1—;—x)—2Lz
=£1{2(x—x2)+1+x2—2r}k
2
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Example 3. Evaluate [[xy(x+y)dedy over the area between

y*=xand y =x. (Gorakhpur 2006, 2005)
Solutien. Let us first mark the region of N
integration which is bounded by o
y=x (1) Y4 L
which is a st. line P
and VY =x (i) &

which is a parabola.
Obviously the region of integration is the
region

Ol
s

OPAQO.
Solving (i) and (ii) we get
¥ =

x=0 or x=1, Fig. 84

which gives y = 0 and y = 1 respectively. Thus
the point 4 is (1, 1).

Now divide the region into strips paralle! to y-axis and consider one such strip
PQ. This strip is bounded by the line y = x on one side and y2 = x or y = V¥ on the
other side

Thus the limits for y will be y = as lower limit and y = v as upper limit.
Then the limits for x will be 0 to 1.

1 fVx
heuce the given integral = J{: _!: Xy (x + y) de dy
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Example 4. Evaluate [ [ rdf dr over the area of the circle
r=asin@
Solution. r = asin8 is a circle with its centre C on D

the line 8 = % Initial line is tangent at the pole O

Circle is symmertical about the line § = 2= . Hence

the value of the integal
= 2 value of the integral of the half circle

O Initial Line
{%/2 fasing Fig. 8.5
=2 Jo A rdeédr

/2 asin @
=2 £ [g} do

0

/2
= a2 sin? 6 46

EXERCISE 8 1
Evaluate the following integrals

1. f.{__}: 3 ‘i"z * dxdy
: 2

x2 + y
fm f fl a=»
3. 1, /5 €OS (e +y)dy dx 4. 4y dy dx

o
5. memdti ‘ .xy(1+x+y)dxdy-123

V@3
6.  Prove that .[ _£ & xzydxd_} ‘;;

1 [Vx
7. Find the value of the integral l; f ; o + 33 dx dy.
X
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8.  Find the value of f f —(w/——%j—-drdy over the positive quadrant
of the circle x2 +y2 = 1, (Gorakhpur 1983, 2004, 2008, 2010)
9. Evaluate f f x%? dx dy over the region x% +y% < 1.

i
10.  Evaluate &"* dx dy

a i
11.  Find the value ofL 1: S V@@= =3 dx dy.

(Purvanchal 2003; Gorakhpur 87)
12.  Evaluate [ [ (2 +y?) dx dy over the region in the positive quadrant

for whichx +y < 1.

7% fasiné
13.  Evaluate A r de dr.

14.  Evaluate [ [ 2d6 dr over the area of the cirdle r = g cos 6.
15.  Evaluate [ [ (x +y)2dxdy over the area bounded by ellipse

2. P
S+ =1
a® b2

§ 8-5. Change of order of integration.

(Gorakhpur 92, 99)

b
Let us consider the integral l: f ){f g; fOx,y) drady

This integral is a summation of strips parallel to y-axis. If we change the order
of integration, then the summation will be that of strips parallel to x-axis, and so
before adding strips we must add up all elements in a strips parallel to the x-axis.

Following procedure is adopted for the change of order of integration.

(i) Mark the region of integration by drawing the curves y=fi®y=5E),
X =aandx = b,

(if) Now divide the region of integration into different parts (if necessary) by
drawing lines parallel to x-axis through the points where strips parallel to x-axis change
their character. These points may be points of intersection of any two of
y=f1&), y=f2(),x =aandx = falling in the region of integration.

(iii) Draw elementary strips parallel to x-axis in any one part of the region.
The value of x in terms of y at the extremities of the elementary strips give limits of
x for that part of the region. ;

(iv) For other parts of the region we proceed similarly and add all such integrals.
Following examples will clarify the method.

Example 5. Change the order of integration in
a X

f . y) dx dy.
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Solution. The region of integration is bounded by
y=0,y=x,x=0and x = a. Thus OA48B is the region of
integration (figure 9.6)

Consider an elementary strip parallel to the axis
of x. Values of x at the extremitics of this strip are
x =y andx = a. These will be the lower and upper limits
of x.

Also y varies from O to B, hence its limits are 0
to a.

Integral Calcubss

x=0 A

B

X=a

a X >
Therefore J; _£ f @, y) dedy g
a a
= _[ _[ f@,y)dy dx
Example 6. Change the order of integration in
=] [=.=] —-y
v dx dy

and hence find its value. (Gorakhpur 2004)

Solution.  The region of integration is Y
bounded by the lines y =x,x = 0 (y-axis) and an
infinite boundary. Thus it is the upper half of the
first quadrant, as shown in figure 9.7.

Let us divide the region into strips paraliel X=0 e 7
tox-axis and consider one such strip. The extremities 7
of this strip lie on x = 0 on one side and on y=x
orx =y on the other side. Hence the limits of x are
from 0 to y. X

Limits of y are clearly 0 to «. o :

Therefore Fig: &7

i ol oty L G

G dy = b e
o el
_Jt; y[x]‘)dy

eV 4

et
= » == e—yd
’ ydy ly

= [— e_y:l: =1

Example 7. Change the order of integration in the double integral

l: acosa J: ‘((_a_:rz—)_
tan & f@y)dx dy. (Gorakhpur 88; Purvanchal 90)
Selution. Here the region of integration is bounded by the line y =xtang

the circle y? = g2 — x2 or x2 +y? = g2 the line x = 0 which is y-axis and the line

X = a cos & which is parallel to y-axis.
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Thus the region of integration is clearly B . iye
O A B as shown in figure 9.8
The circle x2+y? =42 and the line X=0
y =xtan ¢ intersect at 4. Solving them we find
the coordinates of 4 as (@ cos @, a sin @)
Now we can see from the figure that the L
strips parallel to x-axis change their character-at
A. Thus the region of integration is divided into
two parts namely OLA and LAB. RIS
Now in the region LAB any strip parallel Fig. 8.8
to x-axis is bounded by y-axis on one side and the
circle

AR S

AT

X2 +y2 = g2

or x=V(@®— yz)
on the other side. Hence the limits of x are 0 to V(@® — y?) and the limits of y are
OL to OB ie.asina to a.

Again in the region OAL any strip parallel to x-axis lies on y-axis on one side
and the line y =xtana or x =y cot @ on the oher side. Therefore the limits of x will
be 0 to y cot & and the limits of y are clearly 0 to @ sin a.

Hence we have

acosa \f(;a__xz) a;;incx ycota
Sy dedy = f @, y) dy dx

tana
fa i: \Z=
+ ik fxy)dydx.
Example 8. Change the order of integration in the integral
Fi=
Vdxa
0 “Var — 2 (Gorakhpur 99)
Solution. The region of integration is |, _g
bounded by y = V(ax — x?) orx2 +y2 —ax =0 (a -
circle), y = V(ax) or y? = ax (a parabola) and the Lo
lines x=0 and x=a. Thus the region of I(a,a)
integration is OPACO, fig. 9.9. =g

The strips parallel to x-axis change their |[L/__ C =l N
character at the highest point C of the circle. Let
LM be the tangent at C to the circle. Then the
region of integration is obviously divided into three
parts namely OLC, CMA and LFM. Fig. 8.9

From the equation of the circle, we have

2—ax+y>=0
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x =3 {e £ V@ =37}
out of these two values % {a — V(@®=%?)} is lesser than

e + V@ =37y}
The lesser value corresponds to the region OLC whereas the greater one &
the region CMA4.
Now any strip in the region OLC is bounded by the parabola y% =z &

2
X % on one side and the circle on the other side for which we shall take the less

value x = % {a — V(@*=3?)}. Since the point C is (2/2, a/2) hence the limits for 3
are from 0 to a/2. -

In the region CMA, the strip lies on the circle on one side and the Eae
* = a on the other. So the limits of x are from % {2 + V(@* = 9%} to a and the limas
&
>
Again in the region LPM the strip lies on the parabola on one side and the

of y are obviously 0 to

line x = a on the other. So the limits for x are % to @ whereas the Limits for y wi

be -g— to a as the point P is (a,a). Hence the given integral

a/’2 %{a—“(ﬂ 49}
= » Vdy dx.

ar’2 a a a
& i -&::wgn:;gf"’ydx + Lz-!;/awyd"

§ 8-6. Change of order in polar coordinate.

Process is similar to that adopted in Cartesian Coordinates. The only difference
is that in order to evaluate an integral of the type

fl;f(r,e)der

the summation is completed by dividing the region into triangular strips (unlike the
rectangular strips in Cartesian Coordinates). Then we make strip-wise summation to
cover the whole area for which the value 8 will be suitably chosen. When we change
the order of integration we get an integral of the type

f‘L f(@,6)drds

Here the integration is first performed with respect to 6, 7 being kept constant
which means that the summation is first made inside a circular strip. Now the value
of r is chosen so as to cover the whole region. Following example is given as an
illustration of the method.
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Example 9. Change the order of integration in

‘£ /2 l)‘ 2a cos
HE G e (Gorakhpur 83)

Solution. The region of integration is bounded by r=0 (origin),
r=2a cos8 (a circle with centre (g, 0), 6 =0 which

is the initial line and 6 = % (y-axis). Thus the region

of inte- gration is the semi-circle OQA4Q as shown in
the figure 9.10.

To change the order of integration consider the
clementary circular arc PQ (@ varying and 7 remaining
constant). Thus r is bounded by the initial line one
side for which @ = 0 and the circle on the other side

for which
8 = cos™! (é)

which is obtained from the equation of the circle. Since the diameter of the circle is
2a hence the limits for 7 will be 0 to 22. Hence the given integral

2a [Tcos™! (r/a)
= ; f(r, 6)drdé

§ 8:7. Change of variables.

(Transformation) In the evaluation of multiple integral sometimes it is
convenient to change the variables. The process of changing the variables in a multiple
integral is called the transformation of multiple integrals. Suppose we want to transform
the multiple integral

f,!;f(x,y)dxdy

to another system of variables, u, v, where

x=¢ (u,v) and y=v (u,v), say

then the transformation would be completed in the following three steps.

(i) To determine the function f (x,y) in terms of u, v. This is done by algebraic
substitutions and eliminations. Let F (u,v) be its new value

(i) The assignment of new limits. This is also an aigebraic process and
geBmetrical considerations.

(iii) To determine the new element of integration. From Differential Calculus,
we know that dx dy = J dis dv, where J is the Jacobian of transformation and is defined
as

o dy
_|ou ou
T=la oy

av av

Thus we have

JSfey)dedy = [ Fu,v)Jd. av.
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Now, for the third part, we may write

JIf Feoy,2) dedydz = [, {x @ va ),y (v, w), 2 (0, v )}

g dx  or
ou v ow
whereJ=Ml= AT #=0
ou, v, w) ou ov ow
2 oz o
ou ov ow
in the Jacobian of transformation from the coordinates ,y,2) to (x,v,w) and

V' in the region of integration in the new coordinates system.

In case of implicit function i.e., if we are given the relations between x, y, z and
u,v,w in the form

J1G6y,z,u,v,w) =0
L&y, z,u,v,w)=0

&y, z,u,v,w)=0
then the Jacobian J is given by

0 (f13f2:f3)

I=(-1p 2y

0 (f1,/2.f3)

d(x,y,2)
Example 10. Evaluate the double integral

7o R

by changing to polar coordinates.
Solution. Laws of transformation from cartesian to polar is
X=rcosé, y=rsiné.
x* +y2 =72 (cos? 8 + sin? 6) = 12
av

J= or

e g

L7,

cos 6 sin @ sk
—rsinf® rcos@

: dxdy = rde dr.

Now the region of integration is bounded byy =0 (x-axis), y = V(a? - x?) (a
circle with centre at oigin), x = 0 andx = g, This is clearly the positive quadrant of
the circle of radius @. In order to cover this area by means of polar coordinates we

find that the limits of » should be from 0 to a and those of 8 from 0 to -J-zr- Hence we

have
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a Via® — 2 i/ a
J; _L.( )(x2+y2)drdy=.£ ZJO‘ 7 .rd6dr
w/2 al A /2 7
_a n/2 _ a”
-L‘ [}de* -L 4[9] F o

Example 11. Evaluate the integral
.L' : f * Ddedy
0 Vi +y%)
by changing to polar coordinates. (Purvanchal 90; GKP 2(13)

Selution. Region of integration is bounded by the lines
y=0,y=x,x=0

=" _+

and x=1 ' _ o _ Y | AXIS Y

Thus the region of integration is the region B,
OAB (fig. 9.11) where B is the point (1, 1). (1,1)

Equation of the line 4B is

i Q
x=1

or rcosf =1 .

? r=sech.

Therefore:in any triangular strip OPQ into O A y=0
which the area OA4B is divided r varies from 0 to Fig. 8.11
sec @ and then for all such strips @ varies from 0 to
4
2

Thus the integral when transformed to polars

=£“/4£56°9 (r cos 8) 38 dr
r
/4 sec B
=£ {—ﬁ] cos> 0 df

0

n/4
sec@
[0

[log (sec@ + tan 9)]

/4

Example 12. Evaluate the triple integral
v v
e f Ry didydx
J.L. 0 r \/l—x‘—y’*—z“'dy

changing it to spherical polar coordinates.
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Solution. Here, we can see that the region of integration is bounded be
z=0.

z=VI-xr=3?2 (e +y2 +22=1); y=0
y=vi=x> : (i.e.,x2+y3=1), x=0,x=1
which is the volume of the sphere.

X2 +y2 + 22 = 1 in the positive octant.
Changing the Cartesian coordinates (x,y,z) to spherical polar coordinates by

#6,9) ‘

using X =rsiné cos ¢,
Y =rsin0 sin ¢,
z=rcos@

so that x2 +y2 + 22 = /2,

For the volume of the sphere x2 +y2 + 22 = 1 in the positive octant r varies

from 0 to 1, 6 varies fro 0 to -325 and ¢ varies from 0 to sz_ Now, replacing the volume

element @z dy dx by r?sin 6 dr df dep, we have

' v
2 Sl 3 dz dy di
“:1 -f’ ST d
w2 /2 1 ’.2 in@
=£ I .L‘ V-is—_‘f‘?drdadgﬁ
/2 T2 1
1—(1-72) .
=.£ l: I 22D Gnoaraag
n/2 J/2 1
=_£ l: ~[ (ﬁ-—\/l—rz’) sin 6 dr dB de
w/2  (“n/2 4
=£ _£ [sinr— (-‘?-‘41—"——3+lsin-1r” sin 6 d6 dep
9 2 !
/2 /2
=£ _E (%—g-) sin 6 d6 dg
e /2 % pe /2
=3 [—-COSB'] dq5='&- dg

§ 8-8. Area by double integral.

Element of area in Cartesian Coordinates is drdyandrdfdr in polar
coordinates. Hence the area is obtained by evaluating the double integral S axay

in cartesian coordinates or [ S rd8dr in case of polar coordinates, integration
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extending over the area under consideration. Thus the area bounded by the curves
Y=f®), y=f£&),x=a and x = b is given by the double integral

=i‘bffz(x) o

J160)
§ 8:9. Volume under a Surface.

Let A be the region in the xy-plane and z = f (x,y) be a surface. We have to
find the volume between this surface and the region A.

In order to get this volume let us consider a small rectangle of area drdy in
the region 4. Now construct a vertical prism with dx dy as base bounded at the top
by the given surface. The volume of this prism is therefore z dx dy. Now the required
volume is composed of similar prisms constructed over all the elementary rectangles
in the given region

Hence the required volume = [ [ zdrdy where the limits of x and y are yet
to be assigned.

If the region of integration is bounded by the curves

y=h (X) Y =f2 (X), X =a and x=Db,
then the required volume

fb 2 ()
= zdx dy
1L )

Now substituting the value of z in terms of x andy from the equation of the
surface. We can evaluate the integral to get the volume.

Note. If we consider the area dy dz on yz plane and construct prism as above
by drawing lines parallel to x axis the required volume = f [ x dy dz under due limits
of integration.

Similarly by considering the area dz dx on xz plane and erecting the prism on
this base by drawing lines parallel to y-axis the required volume = [ [ y dr dz under

due limits of integration.
1 ' 2
Example 12. Evaluate the triple integral l: £ 1-2"=3 7i _‘ii?ff_ =

by changing it to spherical polar coordinates.

Solution. Here, we can see that the region of integration is bounded by
z=0 z=VI—X*~y*(ie, P+ +22=1),y=0 y=vI—2Z (j.e, 2 +y? = 1),
x = 0,x = 1 which is the volume of the sphere x? + y? + 22 = 1 in the positive octant.
Changing the carterian coordinates (x,y,z) to spherical polar coordinates by
(r,6,¢) using x =rsin6cos 6, y = rsinfsing, z =rcos 6 so that x2 + y2 + 22 = /2,

For the volume of the sphere x2 + y% + 22 = 1 in the positive octant 7 varies
from 0 to 1, 6 varies from 0 to /2 and ¢ varies from 0 to 7/2. Now, replacing the
volume element dz dy dx by 7 sin 6 dr df dg, we have

v v
= -2y dz dy dz
.[1 IZ.LI T2
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w2 [ 12600
=£ ’[mdrdﬁdqﬁ
L e
L {_ rz)sin&drd&d@

V1 —r—-*’) sin 6 dr db d¢

il
~
S
3
S— &—
]H
|

VT
——— + —sin r]osmﬁdﬁdqb

2z "2
2 w2 7
=1 J (3—5) sin 6 d6 dgp
o /2 /2
= [— cosOlF2dp = = dgp
2

Example 13. Find by double integration the area inside the cardiod
r=a(l+ cos6) and outside the circle r = a.

Solution. r = q is a circle with centre as pole and radius @ where as
r=a(1+ cosb)

is the cardicd ABOCA thus the required area B
is as shows by the shaded region in fig 9.12. Q

In order to evaluate this area let us integrate
rdé dr on the shaded area. This area can be divided
into triangular strips. Consider one such strip OPQ. In
this strip 6 remains constant and r varies from r = @
(on the circle) to r = @ (1 + cos 6) on the cardiod. For
all the strips into which the area can be divided 8 varies
from — z/2 to /2.

/2 ["a(1+ cosb)
Thus area =2 b A rdo dr

(because area above the initial line is same as below jt is)

/2 a(1+cosb)
o

a

A

i T y =a(1+cos 8)
Fig 8.12

/2
= g2 {(1+cosB)®~1} a8

/2
= g2 | (cos2 8 + 2 cos 9) do

/2
a? _L. cos? 0 do + 242 (sin 9) ':/2

i
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3 EE 2
T 2%
20 in 26
a sin
FHE L }

(1 + cos 26) dé + 242

/2
+ 2a*
0

i

5
a” | - 8 1]
> 2}-{-2(2 a [4+2].

Example 14. Find the mass of the plate in the form of the cardiod
r = a(1 -+ cos 0) whose density varies as square of radius vector.
Solution. Element of area =rd 6 dr

density par® or p = ki,
where k is a constant.
Element of mass = k2 - rdf dr

= k3 df dr.
Again the curve is symmetrical about the initial line, hence mass of the plate

7 fa(l+cosb)
=2 k3 df dr
x a(1 +cosf)
[ [{}] s

0

4 =
=2kT“_£ (1 + cos 6)* do

_kat |7 20\ 4‘Lx g o
i (2005 2) df = 8ka Cos 2d9

g w/2 ! X
= 16ka” J, (cos t)® dt by substitution 5 =t

_ I'(9/2) T(1/2)
= 16ka’ ==

Example 15. Evaluate by double integral the volume of the region enclosed by
the plane
x=0,y=0,z=0, andx+y+z=ga
Solution. Here a vertical column is bounded by the planes z = 0and
z = a —x —y. The latter plane cuts the xy-plane in the line a —x — y = 0. So the area
A above which the volume stands is the region in xy-plany bounded by the lines
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Yy=0y=a-xx=0x=gq

(a [a—x
Hence the volume = zdx dy

=f_[a*x(a~x—y)dx@

2
_ “a—xzdx___l__a—x:”a__gf
Y% 2 .2 3 [, 6
EXERCISE 8-2

Change the order of integration in the following integrals.

£4£2Gf(x,y)drdy

z/x
2 I f ¥y (GKP 2014, Sid. 2017)
a/2 /a

IZ
-{ iy (Gorakkpur 86, 95, 2003)
4. Give a sketch of the region of integration and change the order of

integration £ 0[ Vdxdy
l 4“ f 2V(@y)
S.  Show that 1 dr dy = vl dy dx

: 2k, ¢ Y@=
6.  Change the order of mtegratzon in Vdxdy

2a
7. Chauge the order of i integration in f J‘;—?V dx dy

(Purvanchal 2003; Gorakhpur 87, 2017)

8.  Change the order of integration f f V dx dv

9.  Evaluate L J; xe= ¥y dx dy by changing the order of integration
(Gorakhpur 92, 94, 99, 2006, 2007: Purvanchal 94)
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1 M
. Evaluat _£ L &y
R e Al (Purvanchal 89, GKP 2006, 09)
[Hint : Change the order of integration]

Evaluate the following integrals by changing to polar coordinates.

11 ‘L‘“.L‘xxdxdy
3 x% + y2

12 .El * xdxdy
' V&2 + 59

13.  Transform to polar coordinates and integrate
Via-2-
dxd
fj‘ Lﬁﬁ+f ¢
the integral being extended over all positive values of x and y

subject to x2 + y2 < 1,
14.  Find by double integration the area of a circle of radius a.

15.  Find by double integration the area of one loop of the curve
7 = a2 cos 26,

16.  Find the mass of a circular plate of diameter a, whose density at any
point is k times the distance from a fixed point on the circumference,

17.  Find the mass of area between y2 = x and 2 = Y- I p =k G2 +y?)

(Purvanchal 89)
1 fVx
[ Hint : Mass L k@2 +y?) dxdy}

18.  Find the volume of the sphere x2 + y2 + 22 = g2
19.  Find the volume in the positive octant of the ellipsoid

2y 22
LG LaZ oy
at b 2
20.  Find the volume of the cylinder x2 + y2 — ax = 0 bounded by the

planes 2 =0 and z =y,

CR
21.  Transform the integral ‘L. .E 1 xzyz Vm dx dy by changing to

polar coordinated and hence evaluate it. (Gorakhpur 2008)
2 (Vo o
22.  Evaluate _1: _L' % xzxﬁd’f%. (Gorakhpur 2002)

23.  (a) Evaluate by changing to polar form
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‘L‘ 1 f Va2 L dy
x Vx? + y§ (Gorakhpur 2005
23.  (b) Evaluate by changing the order of integration :

fl f»/z -2 iy
0 Jx Vi + y2 (GKP 2016,

24.  Prove that the area in the positive quadrant bounded by the curves y? = dax,

Y =dbr,xy=c? and xy = @2 is %(d2 —¢?) log%-

=] =]
25.  Evaluate j; j; e~ & +y) dy dx by, changing it to polar coordinates.

§ 8-10. Triple Integrals

Let the fuaction f (x,y,2) of the point P (x,y,z) be continuous for all points
within a finite region ¥ and on its boundary. Divide the region ¥ into parts, let
oV, 8V; ....8V,, be their volumes. Take a point in each part and form the sum

Srz =f(x1=.y1a 21) 5Vl +f(x2:y2a 22) 6V2 e +f(-xmym {zn) 5Vn

n
= Zf O Yr 2r) V4 (1)
r=1
Then the limit to which the sum (1) tends when » tends to infinity and the
dimensions of each subdivision tends to zero, is called the triple integral of the function
f .y, z) over the region V. This is denoted by

f f _Lf &, y,2)dv
or ffo(x,y,z)drdydz

Evaluation of Triple integrals : ‘
(a) If the region ¥ be specified by the inequalities,
a=x=ph, C=y=<d, esz=<f
then the triple integral

ffﬁf(x,y,z)dxdydz =‘£b~[d£{f(x,y,z)dxdydz
=‘£bdr_£ddy‘£ff(x,y,z)dz

Here the order of integration in immaterial and the integration with respect
to 2nv of x,y and z can be performed first,

(b) If the limits of z are given as functions of x and y, the limits of y as functions
of x while x takes the constant values say from x = a to x = b then

ffl;f( e fbdr ne Zz(xe}')f( !
XV, = Xy Yy
PAEDE=J ) ) Vdigy 169
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The integration with respect o z is performed first regarding x and ¥y as
constants, then the integration w.r. to ¥ is performed regarding ¥ as a constant and
in the last we perform the integration w.r. to x.

1 4z | x4z
Example : Evaluate I = (x+y+2z)dydrd:.

Solution. Here x — z to x+z are the limits of integration of y, 0 to z are there
of x and — 1 to 1 are those of z. The given triple integral is

1 zl- x+z
=), _, Gty+2)dy|draz
1 ke = 2 Xx+z
=_[1.£ xy+%+zy} dr dz

X—z

=£i‘£z x(x+z)+-L-t2£+z(x+z)—-x(x—3)
—ﬁuf-z(x—z)} dx dz

2
=Ii[£z(w+h2)¢J'a

1
=.[1 222 + 2z %3 dz

1 1
=J:1(2z—z2+2zz-z)dz=4£1z3dz

41
=4 ‘—*—] =1[1-1]=0.
2] -1p-x

log2 fx [ x+logy
Fxample. Evaluate &Y+ g dy ds.

Solution. We have

log2 {x [x+1logy
J{; j‘:l: &t 2 dxdy dz

X+ logy

2
=‘£10g .L‘x l'ex"'y"'z iy
L

0
integrating w.r. to z regarding x and y as constants.

=‘£10g2.l:1 [er+y+z+logy_ex+y:| dx dy
log2 fx
=£ £ l: [ez"'eye"’gy—exey]dxdy

=£l°g2[£x2ehy&@—£xfd@J&
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log2 X _
=l: [ezx{yey}ﬁ—ezrj; e”dy—e"{ey}f}]dr]
0

Integrating w.r. to y regarding x as a constant to integrﬁte y& we have applied
integration by parts :

log2
=.£ : [ek-xer—eh{ey)ﬁ—-er[er—1]]dx

X

log 2
=j; [xe3x—e?x(e*—1)—e2"+e”]dr
log2
= Pre® — ¢ + %] ax
log2 log2 log 2
=_L xe3"dx-~£ e dx + e dr

log 2 log 2 log2 log2
=% xe3"] £ —-1-_£ e”dx—l}’ e dy + ¢ dx

0 3
log2

__]; 3Logz_i .‘Z.af. log:2
-3(Iog2)e 313 : +[er]0
= 5 (log 2) ¢'o88 — S (31082 _ 1y + (clog2 _ 1
_8 e _n=28 _28
—310g2 9(8 1)+ 2 1)—310g2 9+1
8 19
== 2 -
3082=3

EXERCISE 8-3

c b a
1. Evaluate -[z—c-[x—-b _[__a % +y? +22) drdy dz

1 3 fx+z
2. Evaluate ! |, & +y +z)dedyd:

3.  Evaluate f f j;:, @ +y2 + 2%) dz dy dx, where V is the region bounded

between the xy-plane and the sphere x2 + V+22=1,

4. Evaluate f f f (@ +y +2) dv dy dz over the tetra hedron bounded by
X=0y=0,z=0andx+y+z=1. 0O



