I~ Elecirostatics

~/ 4. Establish an expression for the electric field of a linear charged
(ﬁénducﬁng straight wire? _ {2007, 2012){SU-2016)
sol. Let us consider a rod of length L with charge q uniformaly distributed over its
s entire length. The charge density on the rod is A = q/L.. We shall calculate the electric
! feld at a point P at a distance Z from the rod. Consider a line element dl at a distance |

from the point O. The charge on this element is dg=A dl.
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The electric field at point P due to the line element is
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The components of dE paraliel and perpenc_licular to the rgd are
dE; = dESin®
dE, = dECos0

Since an element of charge is symmetrically situated on the other side of point
O. Honce the total electric field parallel to the rod is zero then one gets.
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Now tho electric field of entire rod is given by
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If the rod is of infinite length then.
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Now from figure
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Making the use of this substitution one gets
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Thus electric field a point charged rod varies mversely as dst
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Q. 2. Write short notes on electrostatic energy.

Sol. The electric Potential energy of a system of point charges is measured b
amount of work in bringing the charges from infinity. y the
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Let us consider a system of two charges q, and q, separated by a dj;

Let us imagine that the charge q, has been removed to infi mty The potential att?]nce fy
B due to charge q, is e point
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The work required to bring q, from its original point is
W =q,V
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By definition it is the electric potential energy U of the system (q, & q,). Thus
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If another charge qg is brought at a distance rq3 from q4 and rp3 from g3,
keeping q1 and q2 fixed, then the work done is given by
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Hence the total potential energy of the system is

u, = 1 (q1q2+q,q3+qzqs)
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In general, if we have n different charges in space then the potential eneigy of
the system is
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where ¥, gi is the total charge enclosed within the surface

PROOF : Consider a closed surface S enclosing a charge distribution Let us
calculate the flux of electric field due to a charge element dq =p dv where p is the
volume density of charge. Consider an element of surface ds. The electric flux due to
charge dq through this elementary. surface ds is E,.ds. where E, is the electric field due

to dq at the element of surface ds
Thus the electric flux due to charge q, through the entire surface is
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Thus the total electric flux due to the entite AP fributidn enclosed within

the surface is-
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it is the Gauss’s Iavs of electrostatics.
Suppose we have a sphere of radius ‘@’ with total charge q uniformly distributed

over its volume. The volume density of charge distribution is
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we have to calculate the electric field of this sphere at internal and
external points. -
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(i) Internal Point :Let us calculate the eleciric field of a charged sphere at a
distance r (r<a) from the centre, Construct a sph erical gaussian surface of radiusr.
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Total charge inside the Gaussian surface is —3-72'1’31) . Now applying
the Gauss’s law then, one gets ’
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(i) External Points :If the point lies outside the sphere, then one constrict the
Gaussian surface passing through that poini. In this case, Gaussian surface encloses
the entire charge (q) of the sphere.
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Applying Gauss's law then one gets
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Q.4. What does an eletric flux represent ? Establish an expression on the
flux lined with a plane Iamina of area K placed in an eletric field
What is the flux linked when A is paraliel to E (2005, 2011)

Sol: Let us consider an electric field in a certain regaion . At any point
let electric field is E .Now consider an element of area ds at that point. The




S
wcalar product of E and ds i.e.E.ds (=E ds cos0) is difined as the flux of
Gloctic field _over sarface ds where @ is the angle between E and normal to
ho area ds. Thus the electric flux is equal to the product of the normal
cmponant of electric field and the magnitude of the area.

41\(555

Flux=E.ds=E ds cos@ Flux=E.ds Flux=20

If we have a large suface S and the electric field various from point to

point over the surface S, then the electric flux over the surface is given by the
surface integral. ' '

Flux =¢ = j’EdS = jECOS@dS ............ (1)

If the given surface S'is closed one , the electric flux is written as.

flux ¢ = fEds = GEcos0ds . 2)

0Q. 5. What does an electrostaic pressure represent ?

" (GKP-2005,07,09,2014,2016)
Sol. A charged surface because of its own charge produce an out word pres- '
sure . This pressure is known as electrostati¢ pressure. In order to find the

expression for this pressure .let us considor a charged surface .The electric
field out side this charge sueface is .

o

=52 e (1)
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where o is the sulface charge density .Due to this electric field E, the
elementry area dA produce a force.

F=dgE = (2)
where dq is a charge in area dA which is given by
da=cdA = (3)

Therefore we have
F=ocdA.c/2g,
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But the force per unit area is the out word preessuere , therefore
P=2e,

It is the exepression for the pressure on the charged surface
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Q.6. Write short notes on muitipole. (2005,2011)
: OR
Derive an expression for the potential at a point due to an arbitrary charge
distribution.
Sol. Multipole is a collective term for certain point charge system, which in the
order of increasing complexity. A monpole has one pole, similarly a dipole
has two poles and a quard pole has four poles etc. In general the number of
pole in a multipole is always 2T . Where n is the known order of miltipole and
it is a possitive ‘integer. Thus for
n =0, there is a monopole, n =1, there is a dipole

n =2, there is a quadro pole
We have seen that the potential due to mono-
pole varies 1/r, the potential due to dipole varios
as 1/r2 and so on. Therefore is general it may P

be written that the potential various as 1 r

-+l ! r
where n is the order of multipole . r

v
Now we devlop a general experssion for the Inooee 0 /
potential of an orbitrary charge distribution , in < *
power of 1/r.

Consider an arbitrary distribution of charge is
the neighbour hood of orgin as shown in the
folllowing figure.

The electric potentlal at the point P on the y -axis is

V =
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ume charge density , and r is the distance of the charge from point P. Using
law of cosine , we get,
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Now from eqgn (2) we get - -
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Using Binomial expansion , we get
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The above summation can be written in term of legendre polynomial as
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Substituting these value in egn (1), then we get,

V= -n-l—-wi —’lﬂa—) I(rz)nPn cos 0
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It is the experssion of multipole . '
Q. 7. What happens tc the radius of a roap bubble .When itis negativily
charged . Explain the answer ? ) (2004, 06)
Sol. Consider a roap bubble of radious r.In equilbrium, the excess pressure
p acting out ward is batanced by inward pressure 4T/r
resutling from surface tension .If bubble is gently charged , its surface is
subjected to an additicnal out word pressure which makes the bubble to
expend and the new equilbrium is established when the out word pressure
is balanced by the in word pressure orgenating from the surface tension If R
be the new radius of the bubble , then the electric pressure is
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If p, is the new value of the excess pressure , then in equilbrium
il
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If the pressure inside the bubble becomes equal to the atmospheric
pressure , then p,=0 .The charge q, needed to obtain this condition is given

qu 4T

by 32807!.'21?.4 ro.

The potential of the bubble in this condition is given by --

q _ |8RT
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O Ques 8 : Write short notes on electrical images. (GKP—2006,2012,2016)

Soln. : If two equal and oppostite point charges are seperated by a certain
distance then a plane passing through the mid point of the line joining them
and perpendicular to this line is an equipotential surface. The concept of

equipotential surface is useful in solving few porblem involving charges and
conducting srufaces. It is best explained in the method of image.
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A charge + q. placed at a distance r from an mf“ initely large conducting

plate experience a force, because of the induced charges on the conducting
plate.

-
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To evaluate this force, we must know the distribution of induced charge on the
conducting plate. Suppose, we place an equal and opposite charge - q on the
other side of the conducting plate at an equal distance r from the plate,
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Since every pomt on the ocnduction plate is equidistance form the
two charges, therefore it is an equipotential plane.

As seen by the point charge + q, the induced charge of the conduc-
tion plate produce exactly the same field as would a point charge - q placed at
a distance 2r from charge + q. Hence the force between the conduction plate
and charge + q is obtained by applying Coulomb law between the charges + q
and - q. This force is given by.
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The expression of force obtaining in this way is called Method of
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V =0 (by grounding)
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image. By grounding the plate, we ensure that the Potential of the conducting
plate is kept constant and only induced charge contribute the force between
the plate and the point chage.
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o Q.9 Obtain Coulomb's law from Gauss's theorem ? {2013)
Sol. Let us consider an isolated positive point charge g and draw a Gausian
sphere of radius r with ¢ as centre. Both the electric field vector £ and area
vector 4§ are along the same direction i.e. the angle between them is oY
therefore - E.dS = EdcosO = EdS '
Here the flux through this sphere is given by
$r =$E.dS =§EdS
since E is constant for all patches it may be put outside the integral. Thus

¢z = E$dS = E(4mr?) E
Uses Gauss's Law, we get ds
q "
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This equation gives the magnitude of electric field at a point at a distance

r form point charge ¢ . if we put a test charge ¢, at that point, then the force
on the test charge is -
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This is Coulomb's law. Thus the Gausi's law is equivalent to Coulomb's
law and serves equally well as the basic law of electrostatics.
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Q. 10 Find the electric field intensity at a point in the vicinity of an infinite
sheet of charge. {(2014)
Sol. Consider an infinite plane WIth uniform surface charage density is o
constract a cylinderical gaussian surface, half of which lies on one side of

the plane and rest on the other side. The electric Flux through the curved
surface of the gaussian surface is zero.
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If A is the area of the flat surface of the gaussian surface, then the total
charge enclosed within itis q =c. A .
Now applying Gauss's theorem, we get -

EA +EA =" -
ofr, - 2.

For positive charge on the plane, the electric field points away from the
plane and for negative charge it points towards the plane.
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