HOMOMORPHISM, ISOMORPHISM, COSETS AND NORMAL SUBGROUPS

(b) Important Points from the Chapter

- 1. Homomorphic Mapping Suppose G and G' are two groups, the composition in each being denoted multiplicatively. A mapping f of G into G' is said to be a homomorphic mapping (or a homomorphism) of G into G', if f(ab) = f(a) f(b), $\forall a, b \in G$.
 - If f is homomorphic mapping of a group G onto the group G', so that f(G)=G', then the group G' is called a **homomorphic image** of the group G.

 (2015, 10, 07, 02, 1998)
- 2. Isomorphic Mapping Let G and G' are two groups, the composition in each group is multiplication. A mapping f of G into G' is said to be isomorphic mapping of G into G', if
 - (i) f is one-to-one that means distinct elements in G have distinct f-image in G'.
 - (ii) f(ab) = f(a) f(b), $\forall a, b \in G$ that means the image of the product is the product of the images.
 - If f is an isomorphic mapping of a group G into a group G', then f is also called an isomorphism of G into G'. If f is an isomorphism of G onto G', then the group G is called an isomorphic image of the group G.

 (2015, 12, 08, 1996)
- 3. Isomorphic Group Suppose G and G' are two groups. Also, suppose that the compositions in both G and G' have been denoted multiplicatively. Then, group G is isomorphic to the group G', if there exists a one-to-one mapping f of G onto G' such that

$$f(ab) = f(a) f(b), \forall a, b \in G$$

i.e. the mapping f preserves the compositions in G and G'.

If the group G is isomorphic to the group G'. Symbolically, we write $G \cong G'$. (2015)

- 4. Homomorphism of Groups
 - (i) Homomorphism into A mapping f from group G into a group G' is said to be a homomorphism of G into G', if

$$f(ab) = f(a) f(b), \forall a, b \in G.$$
 (2010, 04, 01, 2000)

(ii) Homomorphism onto A mapping f from a group G onto a group G' is said to be a homomorphism of G onto G', if

$$f(ab) = f(a) f(b), \forall a, b \in G.$$

Also, G' is said to be homomorphic image of G.

- Note Isomorphism is a special type of homomorphism, if *f* is a homomorphism of *G* into *G'* and *f* is one-one, then *f* is an isomorphism of *G* into *G'*. Similarly, if *f* is a homomorphism of *G* onto *G'* and *f* is one-one, then *f* is an isomorphism of *G* onto *G'*.
- (iii) Endomorphism A homomorphism of a group into itself is called an endomorphism.
- 5. Conjugate Elements and Conjugacy Relation If a and b be two elements of a group G, then b is said to be conjugate to 'a', if there exists an elements $x \in G$ such that $b = x^{-1}ax$.

If $b = x^{-1}ax$, then b is also called transform of a by x.

If b is conjugate to a, then symbolically we will write $b \sim a$ and this relation in G will be called the **relation of conjugacy**.

Thus, $b \sim a$ iff $b = x^{-1}ax$ for some $x \in G$.

6. Conjugate Class For any element $a \in G$, the set $C(a) = \{x : x \in G, x \sim a\}$ is called the conjugate class of a in G.

In fact, C(a) consists of all elements of the type $y^{-1}ay$ as y varies over G. If G is a finite group, then the relation of conjugacy on G is an equivalence relation on G and therefore it will partition the set G into disjoint equivalence classes. Let $C(a_1)$, $C(a_2)$, ..., $C(a_m)$ be the totality of all conjugate classes of G. As the equivalence classes are pairwise

disjoint and their union is G, we have $o(G) = \sum_{i=1}^{m} |C(a_i)|$, where $|C(a_i)|$

denotes the order of the class $C(a_i)$.

- 7. Self-conjugate Elements An element $a \in G$ is said to be self-conjugate if a is the only member of the class C(a) of elements conjugate to a, i.e. if $C(a) = \{a\}$.
- 8. Cosets Suppose G is a group and H is any subgroup of G. Let a be any element of G. Then, the set $Ha = \{ha : h \in H\}$ is called a **right coset** of H in G generated by a. Similarly, the set $aH = \{ah : h \in H\}$ is called a left **coset** of H in G generated by a. (2012,07)
- 9. Lagrange's Theorem The order of each subgroup of a finite group is a divisor of the order of the group. (2015, 09, 08, 06, 1998, 96)
- 10. Normalizer of an Element of a Group If $a \in G$, then N(a), the normalizer of a in G is the set of all those elements of G which commute with **a**. Symbolically, $N(a) = \{x \in G : ax = xa\}$.
- 11. Normalizer of a Subgroup of a Group Let G be a group and A be its subgroup. Then, the normalizer of A in G denoted by N(A) is the collection of all those elements of G which commute with A, i.e. $N(G) = \{x \in G : xA = Ax\}$.

- 12. Centre of a Group The set Z of all self conjugate elements of a group G is called the centre of G.
 - Symbolically, $Z = \{z \in G : zx = xz, \forall x \in G\}.$
- 13. Cayley's Theorem Every finite group G is isomorphic to a permutation group.
- 14. **Kernel of Homomorphism** If $f: G \to G'$ is a group homomorphism, then the set K of all those elements of G which are mapped onto the identity e' of G' is called the kernel of homomorphism f.

Thus, $\ker f = K = \{x \in G : f(x) = e', \text{ where } e' \text{ the identity of } G'\} = f^{-1} (\{e'\}).$ (2015, 09, 1999)

- 15. Index of Subgroup in a Group If H is a subgroup of a group G, then the number of distinct right (left) cosets of H in G is called the index of H in G and it is denoted by [G:H]. (2016, 06)
- 16. Euler's Theorem If m is a positive integers and a is relatively prime to m, i.e. (a,m)=1, then $a^{\phi(m)}\equiv 1 \pmod{m}$, where $\phi(m)$ is the Euler's- ϕ function. (2014, 1999, 97)
- 17. Fermat's Theorem If p is prime and a is any integer, then $a^p \equiv a \pmod{p}$. (1998, 97)
- 18. Let H and K be finite subgroups of a group G, then

$$o(HK) = \frac{o(H) o(K)}{o(H \cap K)}.$$

- 19. Automorphism An isomorphic mapping of a group G onto itself is called an automorphism of G.
- 20. Inner Automorphism If G is a group, the mapping $f_a: G \to G$ defined by $f_a(x) = a^{-1}xa$, $\forall x \in G$ where a is fixed element of G, is an automorphism of G known as inner automorphism.
- 21. **Normal Subgroup** A subgroup H of a group G is said to be a normal subgroup of G, if for every $x \in G$ and for every $h \in H$, $xhx^{-1} \in H$.

Every group G possesses at least two normal subgroups, namely G itself and the subgroup consisting of identity element e alone. These are called improper normal subgroups. (2011, 08, 1996)

- 22. Simple Group A group having no proper normal subgroups is called a simple group.
 - Note Every group of prime order is simple.
- 23. Quotient Group If G in a group and H is a normal subgroup of G, then the set G/H of all cosets of H in G is a group with respect to multiplication of cosets. It is called the quotient group or factor group of G by H.
 - Note The identity element of the quotient group $\frac{G}{H}$ is H.

ψ Very Short Answer Questions

Q 1. G = (Z, +) and $G' = (\{2^m : m = 0, \pm 1, \pm 2, ...\}, \cdot)$, then, prove that the mapping $f : G \rightarrow G'$ defined by $f(m) = 2^m$, $\forall m \in Z$ is an isomorphism.

Sol. f is homomorphism Let $x, y \in Z$.

Then, we have
$$f(xy) = 2^{xy} = 2^x 2^y = f(x) f(y)$$

 $f(xy) = f(x) f(y), \forall x, y \in Z$

Hence, f is a homomorphism.

f is one-one Let $x, y \in Z$. Then, we have

$$f(x) = f(y) \Rightarrow 2^x = 2^y$$

Taking log on both sides, we get

$$\log 2^{x} = \log 2^{y} \Rightarrow x \log 2 = y \log 2 \Rightarrow x = y$$
$$f(x) = f(y) \Rightarrow x = y$$

Hence, f is one-one.

٠.

f is onto Let $2^x \in G'$, then there exists an element $x \in G$ such that $f(x) = 2^x$. \therefore f is onto.

Hence, f is an isomorphism.

Hence proved.

- **Q 2.** Let G be a group and let e be the identity element of G, then the mapping $f: G \rightarrow G$ defined by $f(a) = e, \forall a \in G$ is an endomorphism of G.
- **Sol.** Let a, b be any two elements of G, then f(a) = e, f(b) = e.

Now, we have f(ab) = e = ee = f(a) f(b).

Thus, f is a homomorphism of G into G'.

Therefore, f is an endomorphism of G.

Hence proved.

- **Q 3.** Let H be a subgroup of a group G. If two right cosets of H in G are not disjoint. Prove that they will be identical. (2016)
- Sol. See the solution of Q. 4 (i) of Short Answer Questions.
 - **Q 4.** Show that the additive group of integers $G = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ is isomorphic to the additive group $G' = \{..., -3m, -2m, -m, 0, m, 2m, 3m, ...\}$, where m is any fixed integer not equal to zero.
- **Sol.** If $x \in G$, then clearly $mx \in G'$. Let $f: G \to G'$ be defined by

$$f(x) = mx, \forall x \in G$$

f is one-to-one Let $x_1, x_2 \in G$. Then, $f(x_1) = f(x_2)$

 $\Rightarrow mx_1 = mx_2$

[by definition of f]

 \Rightarrow $x_1 = x_2$

 $[: m \neq 0]$

Therefore, f is one-to-one.

f is onto Suppose y is any element of G'.

Then, clearly $y/m \in G$.

Also, f(y/m) = m(y/m) = y.

Thus, $y \in G'$

 \Rightarrow there exists $y/m \in G$ such that f(y/m) = y.

Therefore, each element of G' is the f-image of some element of G.

Hence, f is onto.

Again, if x_1 and x_2 are any two elements of G, then

$$f(x_1 + x_2) = m (x_1 + x_2)$$
 [by definition of f]
 $= mx_1 + mx_2$ [by distributive law for integers]
 $= f(x_1) + f(x_2)$ [by definition of f]

Thus, f preserves compositions in G and G'. Therefore, f is an isomorphic mapping of G onto G'. Hence, G is ismorphism to G'. Hence proved.

Q 5. Prove that the normalizer N(a) of $a \in G$ is a subgroup of G.

Sol. We have, $N(a) = \{x \in G : ax = xa\}$

Let $x_1, x_2 \in N(a)$, then $ax_1 = x_1a$, $ax_2 = x_2a$

First, we will show that $x_2^{-1} \in N(a)$

We have, $ax_2 = x_2a \Rightarrow x_2^{-1}(ax_2)x_2^{-1} = x_2^{-1}(x_2a)x_2^{-1}$

 $\Rightarrow x_2^{-1}a = ax_2^{-1} \Rightarrow x_2^{-1} \in N(a)$

Now, we will show that $x_1x_2^{-1} \in N(a)$

We have, $a(x_1x_2^{-1}) = (ax_1)x_2^{-1} = (x_1a)x_2^{-1}$ = $x_1(ax_2^{-1}) = x_1(x_2^{-1}a) = (x_1x_2^{-1})a$

Therefore, $x_1x_2^{-1} \in N(a)$

Thus, $x_1, x_2 \in N(a) \Rightarrow x_1 x_2^{-1} \in N(a)$

Hence, N(a) is a subgroup of G.

Hence proved

Q 6. Prove that the centre Z of a group of G is a normal subgroup of G.

Sol. We have, $Z = \{z \in G : zx = xz, \forall x \in G\}$

First, we will prove that Z is a subgroup of G.

Let $z_1, z_2 \in Z$. Then, $z_1x = xz_1$ and $z_2x = xz_2$, $\forall x \in G$.

We have, $z_2 x = x z_2, \forall x \in G \implies z_2^{-1}(z_2 x) z_2^{-1} = z_2^{-1}(x z_2) z_2^{-1}$

 $\Rightarrow xz_2^{-1} = z_2^{-1}x, \ \forall \ x \in G \Rightarrow z_2^{-1} \in Z$

Now, $(z_1, z_2^{-1})x = z_1$ $(z_2^{-1}x) = z_1$ $(xz_2^{-1}) = (z_1x)z_2^{-1} = (xz_1)z_2^{-1} = x(z_1z_2^{-1})$

Therefore, $(z_1 z_2^{-1})x = x(z_1 z_2^{-1}), \forall x \in G \Rightarrow z_1 z_2^{-1} \in Z$

Thus, $z_1, z_2 \in Z \Rightarrow z_1 z_2^{-1} \in Z$

 \therefore Z is a subgroup of G.

Now, we will show that Z is a normal subgroup of G. Let $x \in G$ and $z \in Z$. Then, $xzx^{-1} = (xz)x^{-1} = (zx)x^{-1} = z(xx^{-1}) = z(e) = z \in Z$.

Thus, $x \in G, z \in Z \Rightarrow xzx^{-1} \in Z$

Hence, Z is a normal subgroup of G.

Hence proved.

Short Answer Questions

- **Q 1.** Define group homomorphism. If $f:G \to G'$ is a group homomorphism, prove that
 - (i) f(e)=e', where e and e' are the identities of G and G', respectively.
 - (ii) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in G.$

(2010, 04, 2000)

Sol. Part I Homomorphism of Groups

(i) **Homomorphism into** A mapping f from group G into a group G' is said to be a homomorphism of G into G', if

$$f(ab) = f(a) f(b), \forall a, b \in G.$$

(ii) **Homomorphism onto** A mapping f from a group G onto a group G' is said to be a homomorphism of G onto G', if

$$f(ab) = f(a) f(b), \forall a, b \in G$$

Also, then G' is said to be homomorphic image of G.

(iii) Endomorphism A homomorphism of a group into itself is called an endomorphism.

Part II

(i) Let e be the identity of G and e' be the identity of G'. Let a be any element of G. Then, $f(a) \in G'$

Now, we have e' f(a) = f(a)

[:e'] is the identity of G'

= f(ea)

[: e is the identity of G]

= f(e) f(a)

[: f is an isomorphic mapping]

Now in group G', we have

$$e' f(a) = f(e) f(a)$$

 $\Rightarrow \qquad e' = f(e)$

[by right cancellation law in G']

- \therefore f(e) is the identity of G'.
- (ii) Suppose e is the identity element of G and e' is the identity element of G'. Then, f(e) = e'.

Now, let a be any element of G. Then, $a^{-1} \in G$ and $aa^{-1} = e$. We have, $e = f(e) = f(aa^{-1}) = f(a) f(a^{-1})$

[: f is composition preserving]

Therefore, $f(a^{-1})$ is the inverse of f(a) in the group G'.

Thus, $f(a^{-1}) = [f(a)]^{-1}$.

Hence proved.

- **Q 2.** Let R be the additive group of real numbers and R_+ be mutiplicative group of positive real numbers, prove that the mapping $f: R_+ \to R$ given by $f(x) = \log x$, $\forall x \in R_+$ is an isomorphism.
- **Sol.** If x is any positive real number, then $\log x$ is definitely a real number. Also, $\log x$ is unique. Therefore, if $f(x) = \log x$, then $f: R_+ \to R$.

f is one-one Let $x, y \in R_+$. Then, f(x) = f(y)

$$\Rightarrow \log x = \log y \Rightarrow e^{\log x} = e^{\log y} \Rightarrow x = y$$

Therefore, f is one-to-one.

f is onto Suppose y is any element of R i.e. y is any real number. Then, e^y is definitely a positive real number, i.e. $e^y \in R_+$.

Now, $f(e^y) = \log e^y = y$. Thus, $y \in R \Rightarrow$ there exists $e^y \in R_+$ such that $f(e^y) = y$. Therefore, each element of R is the f-image of some element of R_+ . Thus, f is onto.

f preserves compositions in $R_{\scriptscriptstyle +}$ and R

Suppose, x and y are any two elements of R_+ .

Then, $f(xy) = \log(xy)$ = $\log x + \log y = g(x) + g(x)$ [from definition of f]

[from definition of f]

Thus, f preserves compositions in R_+ and R.

Here, the composition in R_+ is multiplication and the composition in R is addition. Therefore, f is an isomorphism of R_+ onto R_-

Hence, $R_+ \cong R$.

Hence proved.

Q 3. Prove that the subgroup $H = \{1, -1\}$ of multiplicative group of fourth roots of unity is a normal subgroup. (2018)

Sol. We have, $G = \{1, -1, i, -i\}$ and $H = \{1, -1\}$

We have to prove that H is a normal subgroup of G.

It can be easily seen that H is a subgroup of G.

Now, index of H in $G = \frac{o(G)}{o(H)} = \frac{4}{2} = 2$

And we know that every subgroup of index 2 in a group is a normal subgroup of the group.

Therefore, H is a normal subgroup of G.

Hence proved.

- **Q 4.** Let $f: G \to G'$ be a group homomorphism. Prove that ker f is a subgroup of G and image f is a subgroup of G'. (2017)
- **Sol.** Let $f: G \to G'$ be a group homomorphism and e, e' be the identities of G and G' respectively.

Part I We have, $\ker (f) = K = \{x : x \in G, f(x) = e'\}$

we have to prove that K is a subgroup of G.

Since, f(e) = e' so at least $e \in K$.

Hence, K is not empty.

Let $x, y \in K$, then f(x) = e' and f(y) = e'.

Now,

$$f(xy^{-1}) = f(x) f(y^{-1})$$

= $f(x) [f(y)]^{-1}$
= $e' e'^{-1} = e'$

[: f is a homomorphism]

[: f is a homomorphism]

Thus, $xy^{-1} \in K$ whenever $x, y \in K$.

Hence, ker f is a subgroup of G.

Part II We have

Im
$$(f) = f(G) = \{f(\alpha) = \alpha' : \alpha \in G, \alpha' \in G'\}$$

Since, f(e) = e' so $e' \in f(G)$.

Hence, f(G) is not empty.

Let a', $b' \in f(G)$, so that f(a) = a' and f(b) = b' for some $a, b \in G$.

Now, $a' b'^{-1} = f(a) [f(b)]^{-1} = f(a) f(b^{-1})$

$$= f(ab^{-1}) \in f(G)$$
 [: f is a homomorphism and $ab^{-1} \in G$]

Thus, a', $b' \in f(G) \Rightarrow a'(b')^{-1} \in f(G)$.

Hence, f(G) i.e. image of f is a subgroup of G'.

Hence proved.

- Q 5. Define left and right cosets of a subgroup H of a group G. Prove that
 - (i) two rights cosets of H in G are disjoint or identical.

(ii)
$$Ha = Hb(a, b \in G) \Leftrightarrow ab^{-1} \in H.$$
 (2012, 07)

Sol. Part I Left and Right Cosets Suppose G is a group and H is any subgroup of G. Let a be any element of G. Then, the set $Ha = \{ha : h \in H\}$ is called a right coset of H in G generated by a. Similarly, the set $aH = \{ah : h \in H\}$ is called a left coset of H in G generated by a.

Part II

(i) Suppose H is a subgroup of a group G and let Ha and Hb be two right cosets of H in G. Suppose Ha and Hb are not disjoint. Then there exists at least one element, say G such that $G \in Ha$ and $G \in Hb$.

Let $c = h_1 a$ and $c = h_2 b$, where h_1 , $h_2 \in H$.

Then,
$$h_1a = h_2b \implies h_1^{-1}h_1a = h_1^{-1}h_2b$$

$$\Rightarrow ea = (h_1^{-1}h_2)b \Rightarrow a = (h_1^{-1}h_2)b$$

Since, H is a subgroup, therefore $h_1^{-1}h_2 \in H$.

Let $h_1^{-1}h_2 = h_3$. Then, $a = h_3 b$.

Now,
$$Ha = Hh_3b = (Hh_3)b = Hb$$
.

$$[\because h_3 \in H \Rightarrow Hh_3 = H]$$

Therefore, the two right cosets are identical if they are not disjoint.

Thus, either $Ha \cap Hb = \emptyset$ or Ha = Hb.

Similarly, we can prove that either $aH \cap bH = \phi$ or aH = bH.

(ii) Since, a is an element of Ha, therefore

$$Ha = Hb \Rightarrow a \in Hb \Rightarrow ab^{-1} \in (Hb)b^{-1}$$

$$\Rightarrow ab^{-1} \in H \ (bb^{-1}) \Rightarrow ab^{-1} \in He \Rightarrow ab^{-1} \in H$$

$$\mathbf{Conversely} \ ab^{-1} \in H \Rightarrow Hab^{-1} = H \qquad [\because h \in H \Rightarrow Hh = H]$$

$$\Rightarrow Hab^{-1}b = Hb$$

$$\Rightarrow Hae = Hb \Rightarrow Ha = Hb$$

Q 6. Let $f: G \to G'$ be a group homomorphism and let H be a subgroup of G and H' be a subgroup of G'. Prove that f(H) and $f^{-1}(H')$ are subgroup of G' and G, respectively. (2000)

Sol. Let $h_1, h_2 \in H$. Then, $f(h_1), f(h_2) \in f(H) \subseteq G'$

Now, we have $h_1, h_2 \in H \Rightarrow h_1, h_2^{-1} \in H \Rightarrow h_1 h_2^{-1} \in H$

 $\Rightarrow f(h_1h_2^{-1}) \in f(H) \qquad [\because f \text{ is homomorphism}]$ $\Rightarrow f(h_1) f(h_2^{-1}) \in f(H) \qquad [\because f \text{ is homomorphism}]$

 $\Rightarrow \qquad f(h)[f(h_2)]^{-1} \in f(H)$

Hence, f(H) is a subgroup of G'.

Again, let $a, b \in f^{-1}(H') \subseteq G$. Then, $f(a), f(b) \in H'$

 $\Rightarrow f(a), [f(b)]^{-1} \in H'$ $\Rightarrow f(a)[f(b)]^{-1} \in H'$

[:: H' is a subgroup]

 $\Rightarrow f(a) f(b^{-1}) \in H'$

[: f is a homomorphism]

 $\Rightarrow f(ab^{-1}) \in H'$ $\Rightarrow ab^{-1} \circ f^{-1}(H)$

[: f is a homomorphism]

 $\Rightarrow ab^{-1} \in f^{-1}(H')$ Then, $a, b \in f^{-1}(H') \Rightarrow ab^{-1} \in f^{-1}(H')$

Hence, $f^{-1}(H')$ is a subgroup of G.

Hence proved.

Q 7. Let g be a definite element of a group G. Prove that $\phi: G \to G'$ defined by $\phi(a) = g^{-1}ag$, $\forall a \in G$ is an isomorphism. (2005)

Sol. (i) ϕ is a homomorphism

Since, if $a, b \in G$, then

$$\phi(ab) = g^{-1}(ab) g = g^{-1}(aeb)g$$
, where e is the identity element in G .

$$= g^{-1}(agg^{-1}b) g = (g^{-1}ag)(g^{-1}bg) \qquad \text{[by associativity]}$$

$$= \phi(a) \phi(b)$$

$$\therefore \phi(ab) = \phi(a) \phi(b)$$

(ii) ϕ is one-one

Let $a, b \in G$. Then, we have $\phi(a) = \phi(b)$

$$\Rightarrow \qquad g^{-1}ag = g^{-1}bg$$

 \Rightarrow a=b

[by left and right cancellation laws]

 $\therefore \ \varphi(a) = \varphi(b) \Rightarrow a = b$

Therefore, \$\phi\$ is one-one.

(iii) ϕ is onto Let $b \in G'$, then there exists an element $gbg^{-1} \in G$

such that
$$f(gbg^{-1}) = g^{-1} (gbg^{-1})g$$

 $= (g^{-1}g) b (g^{-1}g)$ [by associativity]
 $= (e) b (e) = b$

 \therefore ϕ is onto.

Hence, f is an isomorphism, i.e. $G \cong G'$.

Hence proved.

Q 8. State and prove Lagrange's theorem.

(2017)

- Or Prove that the order of a subgroup of a finite group is a divisor of the order of the group. (2015)
- Or Define index of a subgroup in a group. Prove that the order and index of a subgroup of a finite group are divisiors of the order of the group.
- **Sol.** Part I Index of Subgroup in a Group If H is a subgroup of a group G, then the number of distinct right (left) cosets of H in G is called the index of H in G and is denoted by [G:H].

Part II Statement The order of each subgroup of a finite group is a divisor of the order of the group.

Proof Let G be a group of finite order n and H be a subgroup of G.

Let o(H) = m.

Suppose $h_1, h_2, ..., h_m$ are the m elements of H.

Let $a \in G$. Then, Ha is a right coset of H in G and we have

$$Ha = \{h_1a, h_2a, \dots, h_ma\}$$

Ha has m distinct elements, since, $h_ia = h_ja \Rightarrow h_i = h_j$. Therefore, each right coset of H in G has m distinct elements. Any two distinct right cosets of H in G are disjoint, i.e. they have no element in common. Since, G is a finite group, the number of distinct right cosets of H in G will be finite, say equal to K. The union of these K distinct right cosets of K in K is equal to K.

Therefore, if Ha_1, Ha_2, \ldots, Ha_k are the k distinct right cosets of H in G, then $G = Ha_1 \cup Ha_2 \cup Ha_3 \cup \ldots \cup Ha_k$.

Thus, the number of elements in G = the number of elements in Ha_1 + the number of elements in Ha_2 +... + number of elements in Ha_k .

[: two distinct right cosets are mutually disjoint]

$$\Rightarrow$$
 $o(G) = km \Rightarrow n = km$

$$\Rightarrow \qquad k = \frac{n}{m} \Rightarrow m \text{ is a divisor of } n.$$

Hence, o(H) is a divisor of o(G).

Here, k is the index of H in G. We have $m = \frac{n}{k}$. Thus, k is a divisor of n.

Therefore, the index of every subgroup of a finite group is a divisor of the order of the group.

Hence proved.

Q 9. Prove that the intersection of two normal subgroups of a group G is a normal subgroup of G. (2012)

Sol. Let H and K be two normal subgroups of a group G.

Since, H and K are subgroups of G, therefore $H \cap K$ is also a subgroup of G.

Now, to prove that $H \cap K$ is a normal subgroup of G.

Let x be any element of G and n be any element of $H \cap K$.

We have, $n \in H \cap K \Rightarrow n \in H, n \in K$

Since, H is a normal subgroup of G, therefore

$$x \in G, n \in H \Rightarrow xnx^{-1} \in H$$

Similarly, $xnx^{-1} \in K$

Now, we have $xnx^{-1} \in H$, $xnx^{-1} \in K \implies xnx^{-1} \in H \cap K$.

Thus, we have $x \in G$, $n \in H \cap K \Rightarrow xnx^{-1} \in H \cap K$.

Hence, $H \cap K$ is a normal subgroup of G.

Hence proved.

Q 10. Show that every subgroup of an abelian group is normal.

Sol. Let G be an abelian group and H be a subgroup of G.

Again, let x be any element of G and h be any element of H.

We have, $xhx^{-1} = xx^{-1}h$

[: G is abelian $\Rightarrow x^{-1}h = hx^{-1}$]

$$=eh=h\in H$$

Thus, $x \in G, h \in H \Rightarrow xhx^{-1} \in H$.

Hence, H is normal in G.

Hence proved.

Q 11. Prove that a subgroup N of a group G is normal iff the product of two right cosets of N in G is a right coset of N in G. (2010. 06)

Sol. Let N be a normal subgroup of a group G. Let a, b be any two elements of G.

Then, Na and Nb are two right cosets of N in G. We have,

$$(Na) (Nb) = N(aN)b = N (Na)b$$
 [: N is normal $\Rightarrow Na = aN$]
= $NNab = Nab$ [: N is normal $\Rightarrow Na = aN$]

Since, $a \in G$, $b \in G \Rightarrow ab \in G$, therefore Nab is also a right coset of N in G. Thus, the product of the right cosets Na and Nb is the right coset Nab.

Conversely Let N be a subgroup of G such that the product of two right cosets of N in G is again a right coset of N in G. Let x be any element of G. Then, $x^{-1} \in G$. Therefore, Nx and Nx^{-1} are two right cosets of H in G.

Consequently, by hypothesis $NxNx^{-1}$ is also a right coset of N in G.

Since, $e \in N$, therefore $ex ex^{-1} = e$ is an element of the right coset $Nx Nx^{-1}$. But N itself is a right coset of N in G and $e \in N$.

Also, if two right cosets have one element common they must be identical. Therefore, we must have

$$Nx Nx^{-1} = N, \forall x \in G$$

 $\Rightarrow n_1xnx^{-1} \in N, \forall x \in G \text{ and } \forall n_1, n \in N$ $\Rightarrow n_1^{-1}(n_1xnx^{-1}) \in n_1^{-1}N, \forall x \in G \text{ and } \forall n_1, n \in N$ $\Rightarrow xnx^{-1} \in N, \forall x \in G \text{ and } \forall n \in N$

 $[: n_1^{-1}N = N \text{ as } n_1^{-1} \in N, \text{ since } n_1 \in N]$

Hence, N is a normal subgroup of G.

Hence proved.

Q 12. Prove that a subgroup H of a group G is a normal subgroup of G iff each left coset of H in G is a right coset of H in G. (2014)

Sol. Let H be a normal subgroup of G.

Then, $xHx^{-1} = H$, $\forall x \in G \Rightarrow (xHx^{-1})x = Hx$, $\forall x \in G \Rightarrow xH = Hx$, $\forall x \in G$

Therefore, each left coset xH is the right coset Hx.

Conversely Suppose that each left coset of H in G is a right coset of H in G. Let x be any element of G.

Then, xH = Hy for some $y \in G$

Since, $e \in H$, therefore $xe = x \in xH$

 $x \in Hy$

 $c \in Hy$ [:: Hy = Hx]

But

 $x \in Hy \Rightarrow Hx = Hy$

Hx = xH [:: Hy = xH]

Thus, we have

 $xH = Hx, \forall x \in G \Rightarrow xHx^{-1} = Hxx^{-1}, \forall x \in G$

 $\Rightarrow xHx^{-1} = H, \forall x \in G \Rightarrow H \text{ is a normal subgroup of } G.$

Hence, H is a normal subgroup of $G \Leftrightarrow xH = Hx, \forall x \in G$. Hence proved.

Q 13. Define a normal subgroup of a group. If H is a subgroup of a group G and N is a normal subgroup of G. Show that $H \cap N$ is a normal subgroup of H.

Sol. Part I Normal Subgroup A subgroup H of a group G is said to be a normal subgroup of G, if for every $x \in G$ and for every $h \in H$, $xhx^{-1} \in H$.

Part II Since, H and N are subgroups of G, therefore $H \cap N$ is also a subgroup of G. Also, we have $H \cap N \subseteq H$. Therefore, $H \cap N$ is a subgroup of H.

Now, to show that $H \cap N$ is a normal subgroup of H.

Let x be any element of H and a be any element of $H \cap N$. Then, $a \in H$ and $a \in N$. Since, N is a normal subgroup of G, therefore we have $xax^{-1} \in N$. Also, H is a subgroup of G. Therefore, we have

 $x \in H, a \in H \Rightarrow xax^{-1} \in H.$

Thus, $xax^{-1} \in H \cap N$.

Now, we have shown that $x \in H$, $a \in H \cap N \Rightarrow xax^{-1} \in H \cap N$.

Consequently, $H \cap N$ is a normal subgroup of G. Hence proved.

Q 14. If N and M are normal subgroups of G. Prove that NM is also a normal subgroup of G.

Sol. We know that a normal subgroup is commutative with every complex. Therefore, we have NM = MN. Now, N and M are two subgroups of G such that NM = MN. Therefore, NM is a subgroup of G. Now, to show that NM is a normal subgroup of G. Let X be any element of G and G are G and G are G and G are G and G and G and G are G and G and G and G and G are G are G and G are G are G are G are G and G are G are G and G are G and G are G

 $x(nm)x^{-1} = (xnx^{-1})(xmx^{-1}) \in NM$

[: N is normal $\Rightarrow xnx^{-1} \in N$ and M is normal $\Rightarrow xmx^{-1} \in M$]

Hence, NM is a normal subgroup of G.

Hence proved.

- **Q 15.** Define symmetric group S_n and alternating group A_n . Also, prove that A_n is a normal subgroup of S_n . (2015)
- **Sol.** Part I Symmetric Group Set of all permutations on n symbols forms a group with respect to permutation multiplication. This groups is called symmetric group and it is denoted by S_n . If $n \le 2$, then S_n is abelian and if $n \ge 3$, then S_n is always non-abelian.

e.g. Symmetric group S_3 on three symbols 1, 2, 3 has 3! = 6 elements.

$$S_3 = \{I, (1\ 2), (2\ 3), (1\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$$

Alternating Group Set of all even permutations on n symbols forms a subgroup of symmetric group S_n . This subgroup is called alternating group and it is denoted by A_n .

e.g. Alternating group A_3 on three symbols 1, 2, 3 has $\frac{3!}{2}$ = 3 elements. A_3

is the set of all even permutations on three symbols.

Hence,

$$A_3 = \{I, (1\ 3\ 2), (1\ 3\ 2)\}.$$

Part II Let α be any element of S_n and β any element of A_n .

Then, β is an even permutation and α may be odd or even. We claim that $\alpha\beta\alpha^{-1}$ is an even permutation.

If α is odd, then α^{-1} is also odd. Now, $\alpha\beta$ is odd and consequently $\alpha\beta\alpha^{-1}$ is even.

If α is even, then α^{-1} is also even. Now, $\alpha\beta$ is even and consequently $\alpha\beta\alpha^{-1}$ is even.

Thus, $\alpha \in S_n$, $\beta \in A_n \Rightarrow \alpha \beta \alpha^{-1} \in A_n$.

Hence, A_n is a normal subgroup of S_n .

Hence proved.

- **Q 16.** Define index of a subgroup in a group G. If G is a group and H is a subgroup of index 2 in G. Prove that H is a normal subgroup of G.
- Sol. Part I See the Part I of Q. 8.

Part II Let H be a subgroup of index 2 in a group G. Then, the number of distinct right (left) cosets of H in G is 2. Let x be any element of G.

If $x \in H$, then we have xH = H = Hx.

If $x \notin H$, then the right coset Hx is distinct from H and the left coset xH is distinct from H. But H is of index 2, therefore the number of distinct right (left) cosets in right (left) coset decomposition of G will be 2.

Therefore, the cosets H, Hx, xH are such that $G = H \cup Hx = H \cup xH$. But there is no element common to H and Hx and also there is no element common to H and xH. Therefore, we must have Hx = xH. Thus, we have $Hx = xH, \forall x \in G.$

Hence, H is a normal subgroup of G.

Hence proved.

- Q 17. If G is a group and N is a normal subgroup of G, prove that the set of all cosets of N in G is a group with respect to the multiplication of cosets. (2016)
 - Or Let N be a normal subgroup of a group G. Prove that the collection of all right cosets of N in G is a group with respect multiplication defined of cosets $(Na)(Nb) = Nab, \forall a, b \in G.$

(2008, 04)

Sol. We have, $\frac{G}{N} = \{Na : a \in G\}.$

Closure property Let $a, b \in G$. Then,

$$(Na)(Nb) = N(aN)b = N(Na)b = NNab = Nab.$$

Since, $ab \in G$, therefore Nab is also a coset of N in G. So, $Nab \in G/N$.

Thus, G/N is closed with respect to coset multiplication.

Associativity Let $a, b, c \in G$, then $Na, Nb, Nc \in G/N$

We have, Na [(Nb) (Nc)] = Na (Nbc)

$$= Na(bc) = N(ab)c = (Nab) Nc = [(Na) (Nb)]Nc$$

Thus, $[(Na)(Nb)]Nc = Na[(Nb)(Nc)], \forall Na, Nb, Nc \in G/N$

Therefore, the product in G/N satisfies the associative law.

Existence of identity We have, $N = Ne \in G/N$.

Also, if Na is any element of G/N, then

$$N(Na) = (Ne)(Na) = Nea = Na$$

and

$$(Na)N = (Na)(Ne) = Nae = Na$$

 $N(Na) = Na = (Na) N, \forall Na \in G/N$ Thus.

Therefore, the coset N is the identity element of G/N.

Existence of inverse Let $Na \in G/N$, then $Na^{-1} \in G/N$.

We have

$$(Na)(Na^{-1}) = Naa^{-1} = Ne = N$$

and

$$(Na^{-1})(Na) = Na^{-1}a = Ne = N$$

Thus,
$$(Na^{-1})(Na) = N = (Na)(Na^{-1})$$

Therefore, the coset Na^{-1} is the inverse of Na.

Thus, each element of G/N possesses inverse.

Hence, G/N is a group with respect to product of cosets. Hence proved.

- **Q 18.** Define a normal subgroup. Prove that the kernel of the homomorphism $f: G \to G'$ is a normal subgroup of G.
 - Or Let f be a homomorphism of a group G into a group G'. Define kernel of f and prove that it is a normal subgroup of G. (2009)
 - Or If $f: G \to G$ is a group homomorphism and ker f = K, then prove that K is a normal subgroup of G. (2005)

Sol. Part I See the Part I of Q. 13.

Part II Let f be a homomorphism of a group G into a group G'. Let e, e' be the identities of G and G', respectively.

Let K be the kernel of f. Then, $K = \{x \in G : f(x) = e'\}$.

Since, f(e) = e', therefore at least $e \in K$. Thus K is not empty.

Let $a_1, a_2 \in K$. Then, $f(a_1) = e', f(a_2) = e'$.

We have, $f(a_1 a_2^{-1}) = f(a_1) f(a_2^{-1})$

$$= f(a_1) [f(a_2)]^{-1} = e' e'^{-1} = e' e' = e'.$$

 $\therefore a_1 \ a_2^{-1} \in K.$

Thus, $a_1, a_2 \in K \Rightarrow a_1 a_2^{-1} \in K$.

Therefore, K is subgroup of G. Now, to prove that K is normal in G. Let g be any element of G and k be any element of K, then f(k) = e'.

We have $f(gkg^{-1}) = f(g) f(k) f(g^{-1}) = f(g)e' [f(g)]^{-1}$ = $f(g) [f(g)]^{-1} = e'$

 $\therefore gkg^{-1} \in K$

Thus, $g \in G, k \in K \Rightarrow gkg^{-1} \Rightarrow K$

Hence, K is a normal subgroup of G.

Hence proved.

Q 19. If Z denote the centre of a group G and G/Z is cyclic, then prove that G is abelian.

Sol. It is given that $\frac{G}{Z}$ is cyclic. Let Zg be a generator of cyclic group $\frac{G}{Z}$,

where $g \in G$. Let $a, b \in G$. Then, we have to show that ab = ba.

Since, $a \in G \Rightarrow Za \in \frac{G}{Z}$

But $\frac{G}{Z}$ is cyclic having Zg as a generator, so there exists some integer m such that

$$Za = (Zg)^m = Zg^m$$
 [: Z is a normal subgroup of G]

Now, $a \in Za$, therefore $Za = Zg^m$

 $\Rightarrow \qquad \qquad a \in Zg^m \Rightarrow a = z_1g^m \text{ for some } z_1 \in Z$

Similarly, $b = z_2 g^n$, where $z_2 \in Z$ and n is some integer.

$$ab = (z_1 g^m) (z_2 g^n) = z_1 g^m z_2 g^n$$

$$= z_1 z_2 g^m g^n \qquad [\because z_2 \in Z \Rightarrow z_2 g^m = g^m z_2]$$

$$= z_1 z_2 g^{m+n}$$

Again,
$$ba = z_2 g^n z_1 g^m = z_2 z_1 g^n g^m = z_1 z_2 g^{m+n}$$

$$[\because z_1 \in Z \Rightarrow z_1z_2 = z_2z_1]$$

ab = ba

Since, ab = ba, $\forall a, b \in G$, therefore G is abelian.

Hence proved.

Long Answer Questions

Q 1. State and prove Cayley's theorem.

(2007, 05).

Sol. Statement Every finite group G is isomorphic to a permutation group.

Proof Let G be a finite group. If $a \in G$, then for every x in G the product ax is also an element of group G. Now, consider the function f_a from G into G defined by

$$f_{\alpha}(x) = \alpha x, \forall x \in G$$

The function f_a is one-one, because if $x, y \in G$, then

$$f_a(x) = f_a(y) \Rightarrow ax = ay$$

 \Rightarrow

$$x = y$$
 [by us]

[by using left cancellation law in G]

The function f_a is also onto because if x is any element of G, then there exists an element a^{-1} x in G such that

$$f_a(a^{-1}x) = a (a^{-1}x) = (aa^{-1}) x = ex = x.$$

Thus, f_a is a one-one function from G onto G. Therefore, f_a is a permutation on G. Let G' denotes the set of all such one-one onto functions defined on G corresponding to every element of G, i.e.

$$G' = \{ f_{\alpha} : \alpha \in G \}.$$

Now, first we will show that G' is a group with respect to the operation known as composite or product of two functions.

(i) Closure property Let f_a , $f_b \in G'$, where $a, b \in G$. From our definition of product of two functions, we have

$$(f_a f_b)(x) = f_a[f_b(x)] = f_a(bx) = a(bx) = (ab) x$$

= $f_{ab}(x), \forall x \in G.$

Therefore, by the definition of equality of two functions, we have $f_a f_b = f_{ab}$.

Since, $ab \in G$, therefore $f_{ab} \in G'$ and thus G' is closed with respect to the product of functions.

(ii) Associativity let f_a , f_b , $f_c \in G'$, where $a, b, c \in G$.

Then, $f_a(f_b f_c) = f_a f_{bc}$ [: $f_b f_c = f_{bc}$] = $f_{a(bc)} = f_{(ab)c} = f_{(ab)} f_c = (f_a f_b) f_c$.

Therefore, the operation in G' is associative.

(iii) Existence of identity If e is the identity of G, then f_e is the identity of G', because for every f_a in G', we have

STREET STREET

$$f_e f_a = f_{ea} = f_a$$
 and $f_a f_e = f_{ae} = f_a$.

(iv) **Existence of inverse** If a^{-1} is the inverse of a in G, then $f_{a^{-1}}$ is the inverse of f_a in G', because

$$f_{a^{-1}} f_a = f_{a^{-1}a} = f_e$$
 and $f_a f_{a^{-1}} = f_{aa^{-1}} = f_e$.

Thus, G' is a group.

Now, we will show that $G \cong G'$.

Consider the function ϕ from G into G' defined by $\phi(\alpha) = f_a$, $\forall \alpha \in G$.

 ϕ is one-one If $a, b \in G$, then

$$\phi(a) = \phi(b) \Rightarrow f_a = f_b$$

$$f_a(x) = f_b(x), \forall x \in G$$

$$ax = bx, \forall x \in G \Rightarrow a = b$$

 \therefore ϕ is one-one.

 ϕ is onto Let f_{α} be any element of G'.

Then, $a \in G$ and we have $\phi(a) = f_a$. Therefore, ϕ is onto.

 ϕ preserves compositions in G and G' If $a, b \in G$, then

$$\phi(\alpha b) = f_{ab} = f_a f_b = \phi(\alpha) \phi(b)$$

 \therefore ϕ preserves compositions in G and G'.

Hence, $G \cong G'$.

Hence proved.

- **Q 2.** Prove that in the set of all groups the relation of isomorphism is an equivalence relation.
 - Or Prove that the relation of being isomorphic in the set of all groups is an equivalence relation. (2016, 11)

Sol. We will prove that the relation of isomorphism denoted by \cong in the set of all groups is reflexive, symmetric and transitive.

Reflexive If G is any group, then $G \cong G$. Let f be the identity mapping on G i.e. let $f: G \to G$ such that f(x) = x, $\forall x \in G$. Clearly, f is one-one onto. Also if x, y are any elements of G, then

$$f(x) = x$$
 and $f(y) = y$.

Also, f(xy) = xy = f(x) f(y)

[: f is identity mapping]

:f is composition preserving also. Thus, f is an isomorphism of G onto G. Hence, $G \cong G$.

Symmetric Suppose a group G is isomorphic to another group G'. Let f be an isomorphism of G onto G'. Then, f is one-one onto and preserves compositions in G and G'. Since, f is one-one onto, therefore, it is invertible, i.e. f^{-1} exists. Also, we know that the mapping f^{-1} is also one-one onto.

Now, we will show that the mapping $f^{-1}:G'\to G$ is also composition preserving.

Let x', y' be any elements of G'. Then, there exist elements $x, y \in G$ such that

$$f^{-1}(x') = x, f^{-1}(y') = y \qquad ...(i)$$

$$f(x) = x', f(y) = y' \qquad ...(ii)$$

$$f^{-1}(x' y') = f^{-1} [f(x) f(y)] \qquad [from Eq. (ii)]$$

$$= f^{-1} [f(xy)] \qquad [\because f(xy) = f(x)f(y)]$$

$$= xy$$

$$= f^{-1}(x') f^{-1}(y')$$

Therefore, f^{-1} preserves compositions in G' and G.

Hence, $G' \cong G$

and

Now,

Transitive Suppose G is isomorphic to G' and G' is isomorphic to G''. Further suppose that $f:G \to G'$ and $g:G' \to G''$ are the respective isomorphic mappings.

We know that the composite mapping $gof: G \rightarrow G''$ defined by

$$(gof)(x) = g[f(x)], \forall x \in G$$

is also one-one onto if both f and g are one-one onto.

Further, if x and y are any elements of G, then

$$(gof)(xy) = g[f(xy)]$$

$$= g[f(x) f(y)] \quad [\because f \text{ is composition preserving}]$$

$$= g[f(x)] g[f(y)] \quad [\because g \text{ is an isomorphism}]$$

$$= [(gof)(x)] [(gof)(y)]$$

Hence, gof preserves compositions in G and G''.

Therefore, gof is an isomorphism of G onto G'', i.e. $G \cong G''$.

Hence, the relation of isomorphism in the set of all groups is an equivalence relation.

Hence proved.

Q 3. Show that the mapping $f:G \to G$ given by $f(x)=x^{-1}$, $\forall x \in G$ is an isomorphism iff G is abelian.

Sol. Let G be an abelian group.

(i) f is one-one Let $x, y \in G$. Then, we have

$$f(x) = f(y)$$

$$x^{-1} = y^{-1} \Rightarrow (x^{-1})^{-1} = (y^{-1})^{-1} \Rightarrow x = y$$
Thus,
$$f(x) = f(y) \Rightarrow x = y$$

 \therefore f is one-one.

- (ii) f is onto If $x \in G$, then $x^{-1} \in G$ and we have $f(x^{-1}) = (x^{-1})^{-1} = x$. \therefore f is onto.
- (iii) Let $x, y \in G$. Then, we have

$$f(xy) = (xy)^{-1} = y^{-1} x^{-1}$$

= $f(y) f(x) = f(x) f(y)$ [: G is an abelian group]

Thus, f(xy) = f(x) f(y), $\forall x, y \in G$

 \therefore f is homomorphism.

Hence, f is an isomorphism.

Conversely Let f is an isomorphism. Then, for all $x, y \in G$, we have

$$f(xy) = f(x) f(y)$$

$$\Rightarrow (xy)^{-1} = x^{-1} y^{-1} \Rightarrow y^{-1} x^{-1} = x^{-1} y^{-1}$$

$$\Rightarrow (y^{-1} x^{-1})^{-1} = (x^{-1} y^{-1})^{-1} \Rightarrow xy = yx, \forall x, y \in G$$

Hence, G is an abelian group.

Hence proved.

- Q 4. Define homomorphism, kernel of a homomorphism and an isomorphism of groups. State and prove the fundamental theorem of group homomorphism. (2015)
 - Or Prove that every homomorphic image of a group G is isomorphic to the quotient group G/K, where K is the kernel of the homomorphism. (2013)
 - Or State and prove fundamental theorem of group homomorphism. (2018)

Sol. Part I

- (i) Homomorphism
 - (a) Homomorphism into A mapping f from group G into a group G' is said to be a homomorphism of G into G', if

$$f(ab) = f(a) f(b), \forall a, b \in G.$$

(b) Homomorphism onto A mapping f from a group G onto a group G' is said to be a homomorphism of G onto G', if

$$f(ab) = f(a) f(b), \forall a, b \in G$$

Also, then G' is said to be homomorphic image of G.

- (c) Endomorphism A homomorphism of a group into itself is called an endomorphism.
- (ii) **Kernel of Homomorphism** If $f: G \rightarrow G'$ is a group homomorphism, then the set K of all those elements of G which are mapped onto the identity e' of G' is called the kernel of homomorphism f.

Thus, ker $f = K = \{x \in G : f(x) = e' \text{ where } e' \text{ the identity of } G'\}$ = f^{-1} ($\{e'\}$).

(iii) Isomorphic Group Suppose G and G' are two groups. Also, suppose that the compositions in both G and G' have been denoted multiplicatively. Then, group G is isomorphic to the group G', if there exists a one-to-one mapping f of G onto G' such that

$$f(ab) = f(a) f(b), \forall a, b \in G$$

i.e. the mapping f preserves the compositions in G and G'. If the group G is isomorphic to the group G'. Symbolically, we write $G \cong G'$.

Part II Statement Every homomorphic image of a group G is isomorphic to some quotient group of G.

Proof Let G' be the homomorphic image of a group G and f be the corresponding homomorphism. Then, f is a homomorphism of G onto G'. Let K be the kernel of this homomorphism.

Then, K is a normal subgroup of G. We will prove that $\frac{G}{K} \cong G'$.

If $a \in G$, then $Ka \in \frac{G}{K}$ and $f(a) \in G'$.

Consider the mapping $\phi: \frac{G}{K} \to G'$ such that

$$\phi(Ka) = f(a), \forall a \in G.$$

First we will show that the mapping ϕ is well-defined, i.e. if $a, b \in G$ and Ka = Kb, then $\phi(Ka) = \phi(Kb)$.

We have,
$$Ka = Kb \Rightarrow ab^{-1} \in K$$

$$\Rightarrow$$
 $f(ab^{-1}) = e' \text{ (identity of } G') \Rightarrow f(a) f(b^{-1}) = e'$

$$\Rightarrow$$
 $f(a) [f(b)]^{-1} = e' \Rightarrow f(a) [f(b)]^{-1} f(b) = e' f(b)$

$$\Rightarrow$$
 $f(a) e' = f(b) \Rightarrow f(a) = f(b)$

$$\Rightarrow \qquad \qquad \phi(Ka) = \phi(Kb)$$

∴ \$\phi\$ is well-defined.

 ϕ is one-one We have, $\phi(Ka) = \phi(Kb) \Rightarrow f(a) = f(b)$

$$\Rightarrow$$
 $f(a) [f(b)]^{-1} = f(b) [f(b)]^{-1}$

$$\Rightarrow \qquad f(a) f(b^{-1}) = e' \Rightarrow f(ab^{-1}) = e'$$

$$\Rightarrow \qquad ab^{-1} \in K \Rightarrow Ka = Kb$$

∴ \$\phi\$ is one-one.

 ϕ is onto G' Let y be any element of G'. Then, y = f(a) for some $a \in G$, because f is onto G'.

Now, $Ka \in \frac{G}{K}$ and we have

$$\phi(Ka) = f(a) = y$$

 $\therefore \phi$ is onto G'.

Finally, we have
$$\phi[(Ka)(Kb)] = \phi(Kab) = f(ab)$$

= $f(a) f(b) = \phi(Ka) \phi(Kb)$

$$\therefore$$
 ϕ is an isomorphism of $\frac{G}{K}$ onto G' .

Hence,
$$\frac{G}{K} \cong G'$$
.

Hence proved.