Chapter Four

HOMOMORPHISM,
ISOMORPHISM, COSETS .
AND NORMAL SUBGROUPS

O Important Points from the Chapter

1. Homomorphic Mapping Suppose G and G’ are two: groups, the
composition in each being denoted multiplicatively. A mapping f of G
into G’ is said to be a homomorphic mapping (or a homomorphism) of G
mto G’, if f(ab)=f(a) f(b),V a,beq.

If  is homomorphic mapping of a group G onto the group G’, so that
f(G)=G", then the group G’ is called a homomorphic image of the
group G. (2015, 10, 07, 02, 1998)
2. Isomorphic Mapping Let G and G’ are two groups, the composition
in each group is multiplication. A mapping f of G into G’ is said to be
isomorphic mapping of G into G, if
() f is one-to-one that means distinct elements in G have distinct
f-image in G".

@) f(adb)=f(a) f(b),V a,b € G that means the image of the product is
the product of the images.
If f is an isomorphic mapping of a group G into a group G’, then fis
also called an isomorphism of G into G’. If f is an isomorphism of
G onto G’, then the group G is called an isomorphic image of the
group G._' (2015, 12, 08, 1996)

3. Isomorphic Group Suppose G and G’ are two groups. Also, suppose
that the compositions in both G and G’ have been denoted
multiplicatively. Then, group G is isomorphic to the group G’, if there
exists a one-to-one mapping f of G onto G’ such that

f@b)=f(a) f(B),Va,beG
1.e. the mapping f preserves the compositions in G and G
If the group G is isomorphic to the group G’. Symbolically, we write
G=G". (2015)

4. Homomorphism of Groups
(1)) Homomorphism into A mapping f from group Ginto a group & is

said to be a homomorphism of G into G, if
f@b)=f(a) f®),Va,becd. (2010, 04, 01, 2000
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(ii)) Homomorphism onto A mapping f from a group G onto a group G’
is said to be a homomorphism of GG onto G, if
f(@ab)=f(a)f(b),Va,beG.
Also, G is said to be homomorphic image of G.
m Note Isomorphism is a special type of homomorphism, if f i5 a homomorphism of
G into G” and f is one-one, then f is an isomorphism of G into G”.

Similarly, if f is a homomorphism of G onto G’ and f is one-one, then f is an
isomorphism of G onto G”.

(1i1) Endomorphism A homomorphism of a group into itself is called an

endomorphism.

5. Conjugate Elements and Conjugacy Relation If a and b be two

10.

11.

elements of a group G, then bis said to be conjugate to ‘a’, if there exists

an elements x e G such that b=x"ax.

If b = x lax, then b is also called transform of @ by x.

If b is conjugate to a, then symbolically we will write b ~ a and this

relation in G will be called the relation of conjugacy.

Thus, b ~a iff b =x'ax for some xeG.

Conjugate Class For any elementa € G,thesetC(a)={x:x € G,x ~ a}

1s called the conjugate class of @ in G.

In fact, C (@) consists of all elements of the type y layas y varies over G.

If G is a finite group, then the relation of conjugacy on G is an

equivalence relation on G and therefore it will partition the set G into

disjoint equivalence classes. Let C(a,), C(a,), -..,C(a,,) be the totality

of all conjugate classes of G. As the equivalence classes are pairwise
m

disjeint and their union is G, we have 0 (G) = ) IC(a;) |, where |C{(q;) |
i=1

denotes the order of the class C(a;).

. Self-—comugate Elements An element a € Gis said to be self—conjugate

if a is the only member of the class C(a) of elements conjugate to aq, i.e.
if C{a) ={a}.

. Cosets Suppose G is a group and H is any subgroup of G. Let a be any

element of G. Then, the set Ha ={ha : h € H}is called a right coset of
H in & generated by a. Similarly, the set aH ={ah: h € H}is called a
left coset of H in G generated by a. (2012,07)

. Lagrange’s Theorem The order of each subgroup of a finite groupis a

divisor of the order of the group. (2015, 09, 08, 06, 1998, 96)
Normalizer of an Element of a Group If a € G, then N(a), the

normalizer of a in G is the set of all those elements of G which commute
with a. Symbolically, N(a) ={x € G: ax = xa}.

Normalizer of a Subgroup ofa Group Let G be a group and Abe its
subgroup. Then, the normalizer of A in G denoted by N(A) is the
collection of all those elements of G which commute with A,

ie. N(@)={xe G:xA= Ax}.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Centre of a Group The set Z of all self conjugate elements of a group
G is called the centre of G.

Symbolically, Z ={z € G:zx=xz,Vx € G}.

Cayley’s Theorem Every finite group G is isomorphic to a permutation
group.

Kernel of Homomorphism If f:G— G’ is a group homomorphism,
then the set K of all those elements of G which are mapped onto the
identity e’ of G is called the kernel of homomorphism f.

Thus, ker f=K ={xeG: f(x) =¢’, where e’ the identity of G’} = 7t {e’d.
(2015, 09, 1999)

Index of Subgroup in a Group If A is a subgroup of a group G, then
the number of distinct right (left) cosets of H in G is called the index of
H in G and it is denoted by [G : H]. (2016, 06)
Euler’s Theorem If m is a positive integers and a is relatively prime
tom, i.e. (@¢,m)=1, then a®™ =1 (mod m), where ¢(m) is the

Euler’s-¢ function. (2014, 1999, 97)
Fermat’s Theorem If pis prime and a is any integer, then
a? =a (mod p). (1998, 97)
Let H and K be finite subgroups of a group G, then
o(HK) =2 oK)
o(H N K)

Automorphism An isomorphic mapping of a group G onto itself is
called an automorphism of G.

Inner Automorphism If G is a group, the mapping f, : G—=> G
defined by f,(x) = a *xa, V x € G where a is fixed element of G, is an
automorphism of G known as inner automorphism.

Normal Subgroup A subgroup H of a group G is said to be a normal
subgroup of G, if for every x € G and for every h € H, xhx™! e H.

Every group G possesses at least two normal subgroups, namely G
itself and the subgroup consisting of identity element e alone. These
are called improper normal subgroups. (2011, 08, 1996)
Simple Group A group having no proper normal subgroups is called a
simple group. |

m Note Every group of prime order is simple.

Quotient Group If G in a group and H is a normal subgroup of G, then
the set G/H of all cosets of H in G is a group with respect to
multiplication of cosets. It is called the quotient group or factor group
of G by H.

m Note The identity element of the quotient group % is H.
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_. c:; Very Short Answer Questions

Ql. G=(Z,+)and G'=({2™":m=0,+1,+ 2, ... },"), then, prove that
" the mapping f :G—> G’ defined by f(m)=2", VmeZ is an
isomorphism. (2014)
Sol. fis homomorphism Let x, ye Z.
Then, we have f(xy)=2% =2*2Y = f(x) f(»)
' fFE)=fx)f(,Vx,yeZ
lIence f is a homomorphism.
fis.one-one Let x, ye Z. Then, we have
f)=f()=2"=27
Taking log on both sides, we get
log2* =log2” = xlog2=ylog2 =x=y
fO=f)=>x=y
Hence [ is one-one.
fis onto Let2* e G/, then there exists an element x € G such that f(x) =2~.
~. f 1s onto.
Hence, f is an isomorphism. ‘ Hence proved. .

@ 2. Let G be a group and let e be the identity element of G, then
the mapping f: G— G defined by f(a)=e,VaeG is an
endomorphism of G.

Sol. Let a, b be any two elements of G, then f(a)=e¢ f () =e

Now, we have f(ab) = e= ee= f(a) f(b).

Thus, f is a homomorphism of G into G’.

Therefore, f is an endomorphism of G. Hence proved.

Q@ 3. Let H be a subgroup of a group G. If two right cosets of H in G
are not disjoint. Prove that they will be identical. (2016)

Sol. See the solution of Q. 4 (1) of Short Answer Questions.

@ 4. Show that the additive group of integers
G=4{...,—-3,-2-1,0,1,23,...} is isomorphic to the additive
groupG’'={...,—3m,— 2m,— m,0,m, 2m,3m,...}, where m is
any fixed integer not equal to zero.

Sol. If xe G, then clearly mxeG’. Let f:G— G’ be defined by
fX)=mx,Vxe€G

f is one-to-one Let x;, x5, € G. Then, f(x)=f(xy)

=% mx; =max, [by definition of f]

= 2, =% [.om#0]
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Therefore, f is one-to-one.

f is onto Suppose yis any element of G’.

Then, clearly y/m eG.

Also, fyim)=m(y/Im)=y.

Thus, yvel@

=> there exists y/m € G such that f(y/m)=y.

Therefore, each element of G’ is the f~image of some element of G.

Hence, fis onto.

Again, if x; and x, are any two elements of G, then

o + x5)=m (i + x5) [by definition of f]

=muy +mx, [by distributive law for integers]
= )+ f(x) [by definition of f]

Thus, f preserves compositions in G and G’. Therefore, f is an isomorphic
mapping of G onto G’. Hence, G is ismorphism to G’. Hence proved.

Q@ 5. Prove that the normalizer N(a) of ae G is a subgroup of G.

Sol. We have, N (a) ={x e G: ax= xa}

Let x;,x5 € N(a), then ax; =xa, ax, = %0 -
First, we will show that x;' € N(a)

We have, Xy = Xo@ => X5 (AX) X5 " = 25" ()25
e x§1a=ax§1=:>x'2'1€N(a,-)
Now, we will show that xlxg1 € N(a)
We have, a(xx;") = (a0 = (xa)xg"

= x(ax51) = %, (55 'a) = (a5 Ya
Therefore, xx5' € N(a)
Thus, x,,% € N(@) = x5, € N(a)
Hence, N (a) is a subgroup of G. ‘ Hence proved

Q@ 6. Prove that the centre Z of a group of G is a normal subgroug
of G.

Sol. Wehave, Z ={zeG:2zx=xz,V x € G}

First, we will prove that Z is a subgroup of G.
Let 2,,2, € Z. Then, z;x = xz;and zx = x29, Vx € G.

We have, 2ok = %20,V x € G = 25 (2a%)25" = 25" (x29)25 "
= x2y' =23lx, VxeG=2z;"e€Z
Now, (2,230 = 2 (23'%) = 2, (¥23") = (@ D)25" = (62)25" = x(2123")

Therefore, (zlz'z'l')x =L (zlzgl), VxeG= 21251 e Z
Thus, 2,2, € Z = 22, € Z
.. Z is a subgroup of G.



3.Sc. (First Year) : MATHEMATICS Paper 1 75

Now, we will show that Z is a normal subgroup of G. Let xeGand z € Z.
Then, xzx™ = (@x2)x ' = (e)x =z@x ) =z(e)=z¢c Z.

Thus, x€G,ze Z = xzx1eZ

Hence, Z is a normal subgroup of G. Hence proved.

(i) Short Answer Questions

@ 1. Define group homomorphism. If f:G—> G’ is a group
homomorphism, prove that

(i) f(e)=¢€’, where e and e’ are the identities of G and G’,
respectively. '

() flaM=[f(a)1 ', VaeaG. (2010, 04, 2000)

Sol. Part I Homomorphism of Groups
(1) Homomorphism into A mapping f from group G into a group G’ is
said to be a homomorphism of G into G’, if :
f@ab)=f() f(b),Va,beq.

(ii) Homomorphism onto A mapping f from a group G onto a group
G’ is said to be a homomorphism of G onto G/, if

flab)=f()fb),Va,beG
Also, then @ is said to be homomorphic image of G.
(iii)) Endomorphism A homomorphism of a group into itself is called an
endomorphism.
Part I1

(1) Let ebe the identity of G and e’ be the identity of G’. Let a be any
element of G. Then, f(a)eG

Now, we have e’ f(a)=f(a) [.- e’ is the identity of G']
= f(ea) [- eis the identity of G]
= f (e) f(a) [ f is an 1somorphic mapping]

Now in group G’, we have
e’ f(a)=f(e) f(a)

= e =f(e [by right cancellation law in G]
~. f(e) is the identity of G*.

(i1) Suppose eis the identity element of G and e’ is the identity element
of G’. Then, f{e)=e".
Now, let a be any element of G. Then, a~
We have, e=f(e)=f(aa™')=f(a) f(a™)

['* f is composition preserving]

Therefore, f(a™') is the inverse of f(a) in the group G'.
Thus, f@™)=[f (@)]™. Hence proved.

1 1

eG and aa™ =e
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@ 2. Let R be the additive group of real numbers and R, be
mutiplicative group of positive real numbers, prove that the
mapping f:R,— R given by f(x)=logx, VxeR, is an
isomorphism. (2012, 08, 06)

Sol. If xis any positive real number, then log xis definitely a real
number. Also, log xis unique. Therefore, if f(x)=logx, then f: R, — R.

f is one-one Let x, ye R, . Then, f(x)= f(y)

=% log x=1log y = /8% = £l°8Y — x=

Therefore, f is one-to-one.

fis onto Suppose yis any element of Ri.e. yis any real number. Then, &
is definitely a positive real number, i.e. ¢ € R, .

Now, f(e’) =loge’ =y. Thus, ye R = there exists ¢ € R, such that
f(&)=y. Therefore, each element of R is the f-image of some element of

£, . Thus, f is onto.

f preserves compositions in R, and R

Suppose, x and y are any two elements of R, . -

Then, f(xy) =log (xv) [from definition of f]
=logx+logy=gx)+ g) [from definition of f]

Thus, f preserves compositions in R, and R.

Here, the composition in R, is multiplication and the composition in R is

addition. Therefore, f is an isomorphism of R, onto R,

Hence, R, = R.

@ 3. Prove that the subgroup H = {1, — 1} of multiplicative group of
fourth roots of unity is a normal subgroup. (2018)
Sol. Wehave, G={1,—-1,i,—i}and H ={1, — 1}
We have to prove that H is a normal subgroup of G.
It can be easily seen that H is a subgroup of G.

Now, index of H in G = oG) _4 _

Hence proved.

o(H) 2
And we know that every subgroup of index 2 in a group is a normal

subgroup of the group.
Therefore, H is a normal subgroup of G. Hence proved.

Q@ 4. Let f :G — G’ be a group homomorphism. Prove that ker f is
a subgroup of G and image f is a subgroup of G’. (2017)
Sol. Let f :G— G’ be a group homomorphism and e, e’ be the identities
of G and G’ respectively.
Part I We have, ker (/) =K ={x:x€ G, f(x)=e"}
we have to prove that K is a subgroup of G.
Since, f(e) = e’ so at least e K.
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Hence, K is not empty.

Let x, ye K, then f(x) =e¢’ and f(y)=¢’.

Now, fFOy ™) =f@ fO™ [ f is a homomorphism)]
= f @) [f(MH]?! [ £ is a homomorphism]
e

Thus, xy™' € K whenever x, y € K.

Hence, ker f is a subgroup of G.

Part IT We have

Im (f)=fG)={fla)=a":acG,a" €G"}

Since, f(e)=e’ so e’ € f(G).

Hence, f(G) is not empty.

Let o', b € f(G), so that f(a) =a’ and f(b) b’ for some a, b € G.

Now, &’ &' = f(a) [f(B)] " = f(a) f(O7) “

=f (@b e F(G) [~ f is a homomorphism and ab™! € G]
Thus, o’ ,b" € f(G)= o &) e FQ). |
Hence, f(G)i.e. image of f is a subgroup of G’. Hence proved.
@ 5. Define left and right cosets of a subgroup H of a group G.
Prove that
(i) two rights cosets of H in G are disjoint or identical.
(ii) Hasz(a, be G) @ab_leH. (2012, 07)

Sol. Part I Left and Right Cosets Suppose G is a group and H is any
subgroup of G. Let a be any element of G. Then, the set Ha ={ha:h € H}
is called a right coset of H in G generated by a. Similarly, the set

al ={ah: h € H}is called a left coset of H in G generated by a.

Part II

(i) Suppose H is a subgroup of a group G and let Ha and Hb be two
right cosets of H in G. Suppose Ha and Hb are not disjoint. Then
there exists at least one element, say ¢, such that c e Ha and c € Hb.

Let ¢= hja and c = hyb, where A, hy € H.

Then, bya = hob => h]'hya = Ay hyb

= ea = (b *hy)b = a = (k] 'hy)b

Since, H is a subgroup, therefore A lh,e H.

Let Ay 'hy = hy. Then, a = hyb.

Now, Ha = Hhyb = (Hhy )b = Hb. [-hy € H= Hhy = H]
Therefore, the two right cosets are identical if they are not disjoint.
Thus, either Ha N Hb = ¢ or Ha = Hb.

Similarly, we can prove that either alf "6H = ¢ or aH = bH.
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(i) Since, a is an element of Ha, therefore
Ha=Hb=>aecHb=ab ! e (Hb)b!

=3 abl'eH bb D) =ablecHe=ablecH

Conversely ab' ¢ H = Hab ' =H [-heH = Hh=H]
= Hab™ b=Hb

=> Hae= Hb= Ha=Hb

Q@ 6. Let f:G— G’ be a group homomorphism and let H be a
subgroup of G and H’ be a subgroup of G’. Prove that J(H)
and f~'(H’) are subgroup of G’ and G, respectively. (2000)
Sol. Let hy, hye H. Then, f(h,), f(h,) e f(H) =G
Now, we have &, hye H = h),hy ' e H = hh;' ¢ H

=3 fhhz") e f(H) [ f is homomorphism)]
= f(h) f(hA3Y) e F(H) [- £ is homomorphism]
= FMWIf DI e FH)

Hence, f(H)is a subgroup of G".
Again, let a,be f1(H’) cG. Then, f(a), f(b) c H’

= f(@),{f()] ™ e H’

=% f@Qf®)1 el [ H’ is a subgroup]
= f@) fb™HeH [~ f is a homomorphism]
= flab™ Y e H’ [~ f is a homomorphism]
= ab™l e fFI(H)

Then, a,be f ' (H)=ab e f ! (H)
Hence, f~!(H’)is a subgroup of G. Hence proved.

Q 7. Let g be a definite element of a group G. Prove that ¢$:G — G’
defined by ¢(a) = g 'ag, Vae G is an isomorphism. (2005)

Sol. (i) ¢ is a homomorphism
Since, if @, b € G, then
¢ (@ab)=g7'(ab) g = g7 (aeb)g, where eis the identity element in G.
=g (agg™'b) g= (g 'ag) (g71bg) [by associativity]
= ¢ (a) d(b)
< o (@b)=¢ (a) ¢ (b)
(11) ¢ is one-one
Let a, b € G. Then, we have ¢(a) = ¢ (b)
= g lag=g " bg
= a=2>& [by left and right cancellation laws]
S o(@)=0B)=a=b
Therefore,. ¢ is one-one.
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(ii1) ¢ is onto Let b e G, then there exists an element gbgteG
such that f(gbg )=g"" (gbg")g

=(g ') b(g'g) [by associativity]
=(@b)=0b
. ¢ 1s onto.
Hence, f is an isomorphism, i.e. G = (". Hence proved.
@ 8. State and prove Lagrange’s theorem. (2017)
Or Prove that the order of a subgroup of a finite group is a
divisor of the order of the group. - (2015)

Or Define index of a subgroup in a group. Prove that the order
and index of a subgroup of a finite group are divisiors of the
order of the group.

Sol. Part I Index of Subgroup in a Group If H is a subgroup of a

group G, then the number of distinct right (left) cosets of H in G is called
the index of H in G and is denoted by [G : H].

Part II Statement The order of each subgroup of a finite group is a
divisor of the order of the group.
Proof Let G be a group of finite order n» and H be a subgroup of G.
Let o (H)=m.
Suppose Ay, ho,...,h,, are the m elements of H.
Let a €G. Then, Ha is a right coset of H in G and we have
Ha={h,a,hya,...,h,a}

Ha has m distinct elements, since, ia=h,a = h;=h;. Therefore, each
right coset of H 1n (G has m distinct elements Any two distinct right
cosets of H in G are disjoint, i.e. they have no element in common. Since,
G is a finite group, the number of distinct right cosets of H in G will be
finite, say equal to k. The union of these & distinct right cosets of H in G
is equal to G.
Therefore, if Ha,, Ha,,...,Ha, are the k distinct right cosets of H in G,
then G=Ha, U Ha, U Hay U...u Ha,.
Thus, the number of elements in G = the number of elements in Ha, + the
number of elements in Hag +... + number of elements in Ha,,.

[ two distinct right cosets are mutually disjoint]

=P o(G)=km=>n=km
= k="t — m is a divisor of n.
m

Hence, o(H) 1s a divisor of o(G).

Here, k is the index of H in G. We have m = % Thus, k1is a divisor of n.

Therefore, the index of every subgroup of a finite group is a divisor of the -
order of the group. Hence proved.
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@ 9. Prove that the intersection of two normal subgroups of a
group G is a normal subgroup of G. (2012)
Sol. Let H and K be two normal subgroups of a group G.
Since, H and K are subgroups of G, therefore H Nn K is also a subgroup of G.
Now, to prove that H n K is a normal subgroup of G.
Let x be any element of G and n be any element of H nK.
Wehave,ne HNnK =2neH,neK
Since, H is a normal subgroup of G, therefore
xeG,ne H=>xnx'eH

Similarly, xnx ' e K
Now, we have xnx! ¢ H,xnx' e K =axnx ' e HNnK.
Thus, we have xe G,ne HNK = xnx' e HN K.
Hence, H N K is a normal subgroup of G. Hence proved.

Q@ 10. Show that every subgroup of an abelian group is normal.

Sol. Let G be an abelian group and H be a subgroup of G.
Again, let x be any element of G and h be any element of H.

We have, xhx ! =xx'h [ G is abelian = xLh =hx1]
=eh=heH

Thus, xe G,h e H = xhx™* € H.

Hence, H is normal in G. Hence proved.

Q 11. Prove that a subgroup N of a group G is normal iff the product

of two right cosets of N in G is a right coset of N in G.
(2010, 06)

Sol. Let N be a normal subgroup of a group G. Let a, b be any two
elements of G. ' ,
Then, Na and Nb are two right cosets of N in G. We have,
(Na) (Nb) = N(aN)b =N (Na)b [- N is normal = Na =alN ]
= NNab = Nab [- NN = NJ}
Since, a € G,b € G = ab € G, therefore Nab is also a right coset of IV in G.
Thus, the product of the right cosets Na and Nb is the right coset Nab.

Conversely Let N be a subgroup of G such that the product of two right
cosets of N in G is again a right coset of N in G. Let x be any element of
G. Then, x ' €G. Therefore, Nx and Nax~! are two right cosets of H in G.
Consequently, by hypothesis NxNx ! is also a right coset of NV in G.
Since, e € N, therefore ex ex~! = eis an element of the right coset Nx Nx L.
But N itself is a right coset of N in G and e V.

Also, if two right cosets have one element common they must be
identical. Therefore, we must have

NxNx1=N,VxeG
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— nlxnx“leN,VxeGananl,neN
= nl(naxnx ) en®N,VxeG andV n,neN
=% xnx e N,VxeGandVnelN
[-ni!N =N as n;! € N, since n, € N]
Hence, N is a normal subgroup of G. Hence proved.

@ 12. Prove that a subgroup H of a group G is a normal subgroup of
G iff each left coset of H in G is a right coset of Hin G. (2014)

Sol. Let H be a normal subgroup of G.

Then, xHx'=H,VxeG= (xHx Y)x= Hx,V xeG

— xH =Hx,Vxe€G

Therefore, each left coset xH is the right coset Hcx.

Conversely Suppose that each left coset of H in G is a right coset of H in
G. Let x be any element of G.

Then, xH = Hy for some y€ G
Since, e € H, therefore xe=x¢€ xH

et x e Hy [ Hy = Hx«
But xe Hy = Hx= Hy

Hx=xH [ Hy = xH]
Thus, we have xH =Hx,VxeG= xHx'=Hxx*,VxeG

— xHx! = H,Vx e G = H is a normal subgroup of G.
Hence, H is a normal subgroup of G < xH = Hx,V x € G. Hence proved.

Q@ 13. Define a normal subgroup of a gr'oup. If H is a subgroup of a
group G and N is a normal subgroup of G. Show that H N N is
a normal subgroup of H. (2017,11,08)

Sol. Part I Normal Subgroup A subgroup H of a group G is said to be
a normal subgroup of G, if for every x € G and for every h € H, xhx ! e H.

Part II Since, H and N are subgroups of G, therefore H N N is also a
subgroup of G. Also, we have H AN < H. Therefore, HN N is a
subgroup of H.

Now, to show that H NN is a normal subgroup of H.
Let x be any element of H and a be any element of H " N. Then,a € H
and a € N. Since, N is a normal subgroup of G, therefore we have
xax~! € N. Also, H is a subgroup of G. Therefore, we have

xe Hae H = xax ' e H.
Thus, xax ' € H N N.

Now, we have shown that xe H,a € HAN =xax e HNN.
Consequently, H n N is a normal subgroup of G. Hence proved.

Q 14. If N and M are normal subgroups of G. Prove that NM is also a
normal subgroup of G. -
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Sol. We know that a normal subgroup is commutative with every
complex. Therefore, we have NM = MN. Now, N and M are two
subgroups of G such that NM = MN. Therefore, NM is a subgroup of G.

Now, to show that NM is a normal subgroup of G. Let x be any element of
G and nm be any element of NM. Then, n € N,m € M and we have

x(nm)x ! = (xnx HD@max ) e NM
[ N is normal = xnx ! € N and M is normal = xmx 1 e M]
Hence, NM is a normal subgroup of G. Hence proved.

@ 15. Define symmetric group S, and alternating group A,. Also,
P 9n
prove that A, is a normal subgroup of S ,. (2015)

Sol. Part I Symmetric Group Set of all permutations on n symbols
forms a group with respect to permutation multiplication. This groups is
called symmetric group and it is denoted by S,,. If n <2, then S,, is abelian
and if » = 3, then S, is always non-abelian.
e.g. Symmetric group S; on three symbols 1,2, 3 has 3!=6 elements.

S; ={1,(12),23),(13),(123),132);

Alternating Group Set of all even permutations on n symbols forms a
subgroup of symmetric group S,,. This subgroup is called alternating
group and it is denoted by A,,.

!
e.g. Alternating group A; on three symbols 1, 2, 3 has % =3 elements. A;

is the set of all even permutations on three symbols.

Hence, Az ={I,(132),(132)}

Part II Let o be any element of S,, and B any element of A,,.

Then, B is an even permutation and ¢ may be odd or even. We claim
that afa™! is an even permutation.

If o is odd, then a™! is also odd. Now, o is odd and consequently afo!is

even.
If o is even, then o™t is also even. Now, off is even and consequently

oo is even.
Thus,a €S, Be 4, =afa™ € A,.
Hence, A, is a normal subgroup of S,,. Hence proved.

@ 16. Define index of a subgroup in a group G. If G is a group and H
is a subgroup of index 2 in G. Prove that H is a normal

subgroup of G. (2016)

Sol. Part I See the Part I of Q. 8.

Part II Let H be a subgroup of index 2 in a group G. Then, the number
of distinct right (left) cosets of H in G is 2. Let x be any element of G.

If x € H, then we have xH = H = Hx.

A
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If x ¢ H, then the right coset Hxis distinct from H and the left coset xH is
distinct from H. But H is of index 2, therefore the number of distinct
right (left) cosets in right (left) coset decomposition of G will be 2.

Therefore, the cosets H, Hx, xH are such that G = H U Hx=H U xH. But
there is no element common to H and Hx and also there is no element
common to H and xH. Therefore, we must have Hx = xH. Thus, we have
Hx=xH,V xeG.

Hence, H is a normal subgroup of G. | Hence proved.

Q 17. If G is a group and N is a normal subgroup of G, prove that the
set of all cosets of N in G is a group with respect to the
multiplication of cosets. (2016)

Or Let N be a normal subgroup of a group G. Prove that the
collection of all right cosets of N in G is a group with respect
to multiplication of cosets defined by
(Na) (Nb) = Nab,V aq,beG.

(2008, 04)

Sol. We have, }—(3; ={Na :a € G}.

Closure property Let a, b € G. Then,

(Na) (Nb) = N (aN)b = N (Na)b = NNab = Nab.
Since, ab € G, therefore Nab is also a coset of Nin G. So, Nab e G/N.
Thus, G/N is closed with respect to coset multiplication.
Associativity Let a, b, ¢ € G, then Na, Nb, Nce G/N
We have, Na [(Nb) (INc)] = Na (INbc)

= Na(bc) = N (ab)c = (Nab) Nc = [(Na) (Nb)]Nc

Thus, [(Na) (INb)] Nc = Na [(INb) (No)], V Na,Nb,Nce GI/N
Therefore, the product in G/N satisfies the associative law.
Existence of identity We have, N = Nee G/N.
Also, if Na is any element of G/ N, then

N (Na) = (Ne) (Na) = Nea = Na
and (Na)N = (Na) (Ne) = Nae= Na
Thus, N (Na)=Na=(Na) N,V Na e GIN
Therefore, the coset N is the identity element of G/N.
Existence of inverse Let Na € G/N, then Na™' e G/N.
We have (Na) (Na™') = Naa™' = Ne= N
and (Na™') (Na) = Na~'a = Ne= N
Thus, (Na™) (Na) = N = (Na) (Na™)
Therefore, the coset Na™! is the inverse of Na.
Thus, each element of G/N possesses inverse.
Hence, G/N is a group with respect to product of cosets. Hence proved.
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Q 18. Define a normal subgroup. Prove that the kernel of the
homomorphism f : G — G’ is a normal subgroup of G.

Or Let fbe a homomorphism of a group G into a group G’. Define
kernel of fand prove that it is a normal subgroup of G.  (2009)

Or If f:G — G is a group homomorphism and ker f = K, then
prove that K is a normal subgroup of G. (2005)

Sol. Part I See the Part I of Q. 13.

Part II Let fbe a homomorphism of a group G into a group @'. Let e, e’
be the identities of G and @, respectively.

Let K'be the kernel of . Then, K ={xcG: f(x)=¢’ }.
Since, f (e) = ¢’, therefore at least e € K. Thus K is not empty.
Let a,,a; € K. Then, f (a;)=¢’, f(as) =¢".
We have, f(a,a3") = f(a;) f(az")

=fla) [fla) t=e e 1= e’ =¢.
~a; ayt € K.
Thus, a,,a, € K = a,a;* € K.

Therefore, K is subgroup of G. Now, to prove that K is normal in G. Let g
be any element of G' and & be any element of K, then f(k) = ¢’.

We have f(gkg™) = f(&) f(B) f (g™") = f(g)e’ [F(g)]™
=f@ [f@I ' =¢
- gkgle K
Thus, g€ G, ke K = gkg! = K
Hence, K is a normal subgroup of G. Hence proved.

Q 19. If Z denote the centre of a group G and G/Z is cyclic, then
prove that G is abelian.

Sol. 1t is given that —g- is cyclic. Let Zg be a generator of cyclic group EZ;—,

where g € G. Let a, b € G. Then, we have to show that ab = ba.

Since, deGﬁZae—S—-

But —Czi is cyclic having Zg as a generator, so there exists some integer m
such that

Za = (Zg)" = Zg™ [ Z is a normal subgroup of G}
Now, a € Za, therefore Za = Zg™

. ang/"=>@=z$gmforsomezleZ
Similarly, b = 2,g", where 2, € Z and »n is some integer.
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Now, ab =(2,8™) (2.8™) = z,8"2,8"
=212,8"8" [r2p€ Z = 2,8" = g"'2)
— zlzzgfn'i' n
Again, ba =2z,8"2,8" = 22,87 g =z g™t " [z € Z = 212, = 2521]
ab = ba
Since, ab = ba, V a, b € G, therefore G is abelian. Hence proved.

q; Long Answer Questions

@ 1. State and prove Cayley’s theorem. (2007, 05) .

Sol. Statement Every finite group G is isomorphic to a permutation
group.
Proof Let G be a finite group. If ¢ € G, then for every xin G the product
axis also an element of group G. Now, consider the function f, from G
into G defined by
foxX)=ax,VxeG
The function f, is one-one, because if x, y € GG, then
fa@)=fo(y) = ax=ay
= == [by using left cancellation law in G]
The function f, is also onto because if xis any element of G, then there
exists an element ¢! xin G such that
fla'w=a (@ ®=(aa Hr=ex=x
Thus, f, is a one-one function from G onto G. Therefore, f, 1s a
permutation on G. Let G’ denotes the set of all such one-one onto
functions defined on G corresponding to every element of G, i.e.
G’ ={f,;aeCG}
Now, first we will show that G’ is a group with respect to the operation
known as composite or product of two functions.
(i) Closure property Let f,, f, €G’, where a,beG . From our
definition of product of two functions, we have
(fofs) @) = folfo ()] = fo(bx)=a(bx) = (ab)x
= fop ),V xeG.

Therefore, by the definition of equality of two functions, we have

folo = fap-

Since, ab € G, therefore f,, € G’ and thus G’ is closed with respect to

the product of functions.

(i) Associativity let f,, f,,f.€G’, where a,b,ceG.
Then,  f, (if)="fa foc [ fofe=focl
= Ja(be) = fiab)c = fEab)fc = (faﬁ)) fc‘

Therefore, the operation in G’ is associative.



86

(1i1) Existence of identity If eis the identity of G, then f, is the
identity of G’, because for every f, in G/, we have
fefa = fea = fa and fof. = for = fo-
(iv) Existence of inverse If ¢! is the inverse of ¢ in G, then }"m_1 is the
inverse of f, in G, because
fa—l Ja =f¢-la = f. and fafa-—l =faa-1 = fe
Thus, G’ is a group.
Now, we will show that G=G".
Consider the function ¢ from G into G’ defined by ¢(a)=f,,Va eG.
¢ is one-one If a, b € G, then
b @=00)=f=1
= Ja@=f 0, VxelG
= ax=bx,VxeG=a=»>b
~. ¢ is one-one.
¢ is onto Let f, be any element of G’.
Then, a € G and we have ¢(a) = f,- Therefore, ¢ is onto.
¢ preserves compositions in G and G’ If q, b €G, then

¢ (@b)=fop =fufs = (@) ¢ (b)
- ¢ preserves compositions in G and G’.
Hence, G=G". Hence proved.

Q 2. Prove that in the set of all groups the relation of
isomorphism is an equivalence relation.

Or Prove that the relation of being isomorphic in the set of
all groups is an equivalence relation. (2016, 11)

Sol. We will prove that the relation of isomorphism denoted by = in the
set of all groups is reflexive, symmetric and transitive.
Reflexive If G is any group, then G=G. Let f be the identity mapping on
G i.e. let f:G— G such that f(x)=x,V xeG. Clearly, f is one-one onto.
Also if x, y are any elements of G, then

fE)=xandf(y)=y.
Also, fxy)=xy=f() f(y) [~ f is identity mapping]
.. f 1s composition preserving also. Thus, f is an isomorphism of G onto G.
Hence, G =G.
Symmetric Suppose a group G is isomorphic to another group G’. Let f
be an isomorphism of G onto G’. Then, f is one-one onto and preserves
compositions in G and G’. Since, f is one-one onto, therefore, it is
invertible, i.e. f~! exists. Also, we know that the mapping ! is also
one-one onto.



B.Sc. (First Year) : MATHEMATICS Paper 1 87

Now, we will show that the mapping f1:G’— G is also composition
preserving.

l.et x°, ¥’ be any elements of G’. Then, there exist elements x, y € G such
that

Fla)=x @)=y - ()
and f=x", f()=y’ ...(i1)
Now, e )= IF@ F] [from Eq. (i1)]

= [ [f ()] [« fey) = F)f ()
= Xy
=f1e) o)
Therefore, f~! preserves compositions in G’ and G.
Hence, G'=G .~
Transitive Suppose G is isomorphic to G” and G’ is isomorphic to G”.
Further suppose that f:G— G’ and g:G’ — G” are the respective
isomorphic mappings.
We know that the composite mapping gof : G— G” defined by
(gof) () =glf®)],VxeG
is also one-one onto if both f and g are one-one onto.
Further, if x and y are any elements of G, then
(gof) (xy)= g [f (x»)]
=gf@ f(y»] [ f is composition preserving]
=glf@l glfnl [ gis an isomorphism]
= [(gof) ()] [(gof) (»)]
Hence, gof preserves compositions in G and G”.
Therefore, gof is an isomorphism of G onto G”, i.e. G=G".
Hence, the relation of isomorphism in the set of all groups is an
equivalence relation. Hence proved.
Q@ 3. Show that the mapping f:G — G given by
f(x)=x"1,V xeG is an isomorphism iff G is abelian.
(1996)

Sol. Let G be an abelian group.
(1) fis one-one Let x, yeG. Then, we have

f@)=f)
= =y l=E@Hl=@") = x=y
Thus, f=fN=>x=y h

-. f is one-one.
(i) fis onto Ifxe G, then x! € G and we have f(x )= ()" =x
.. fis onto.
(ii1) Let x, y € G. Then, we have
Fay)=@y)t=y"x"
=ffx)=f® fQ) [ G is an abelian group]
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Thus, fG)=f®) f(),Vx,yeCG

-. f is homomorphism.

Hence, f is an isomorphism.

Conversely Let f is an isomorphism. Then, for all x, ye G, we have

fay)=f@©) f»

-5 (xy)—l =ty oyl oyl
= ()t =(xy ) xy=yx,Vx,yeG
Hence, G is an abelian group. Hence proved.

Q 4. Define homomorphism, kernel of a homomorphism

and an isomorphism of groups. State and prove the
fundamental theorem of group homomorphism. (2015)

Or Prove that every homomorphic image of a group G is
isomorphic to the quotient group G/K, where K is the

kernel of the homomorphism. (2013)
Or State and prove fundamental theorem of group
homomorphism. (2018)

Sol. Part 1

(i) Homomorphism

(2) Homomorphism into A mapping f from group G into a group
G’ is said to be a homomorphism of G into G, if

flab)=f(a) f(b),Va,beG.

(b) Homomorphism onto A mapping f from a group & onto a
group G’ is said to be a homomorphism of G onto &, if

flab)=f(a)f(b),Va,beG
Also, then ¢ is said to be homomorphic image of G.

(c) Endomorphism A homomorphism of a group into itself is
called an endomorphism.

(ii) Kernel of Homomorphism If f : G— G is a group homomorphism,

then the set K of all those elements of G which are mapped onto the
identity e’ of G’ is called the kernel of homomorphism f.

Thuls, ker f=K ={xeG: f(x)=e’ where e’ the identity of G’}

=f"{e D).

(111) Isomorphic Group Suppose G and G’ are two groups. Also,

suppose that the compositions in both G and G’ have been denoted

multiplicatively. Then, group G is isomorphic to the group G’, if

there exists a one-to-one mapping f of G onto G’ such that
f(ab)=f(@) f(b),Va,beG

i.e. the mapping f preserves the compositions in G and G’.

If the group G is isomorphic to the group G’. Symbolically, we write

G=G".
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Part II Statement Every homomorphic image of a group G is
isomorphic to some quotient group of G.

Proof Let G’ be the homomorphic image of a group G and f be the
corresponding homomorphism. Then, fis a homomorphism of G onto G”.
Let K be the kernel of this homomorphism.

Then, K is a normal subgroup of G. We will prove that % =G’
If a € G, then Ka € % and f(a) e G".

Consider the mapping ¢: % — G’ such that

p(Ka)=f (a),Vaed.
First we will show that the mapping ¢ is well-defined, i.e. if ¢, b € G and
Ka = Kb, then ¢ (Ka) = ¢(Kb).
We have, Ka =Kb=ab ' e K
f(ab™) = e’ (identity of G) = f(a) f(b" ) =¢’

f@ @I =" =f(@ [fFBI fB)=e fb)

f(@)e = f(b) = f(a) = f(b)

¢(Ka) = $(Kb)
~. ¢ is well-defined.
¢ is one-one We have, ¢(Ka) = ¢(Kbd) = f(a) = f(b)

/A

=> f@) [F®I™ = F®) [FOIT
=> f@) fo)=¢ = flab')=¢
= ab!t e K = Ka=Kb

~. ¢ is one-one.
¢ is onto G’ Let y be any element of G’. Then, y = f(a) for some a € G,
because fis onto &&'.

Now, Ka —g- and we have
d(Ka)=f(a)=y
~. ¢ is onto G”.
Finally, we have ¢[(Ka) (Kb)] = $(Kab) = f(ab)
= f(a) f(b) = ¢ (Ka) $(KDb)

~. ¢ is an isomorphism of T onto G’.

Hence, E =G’ Hence proved.



