s ﬂ - ELASTICITY

(Zmes('i) State Hookq law‘? explain poisson’s ratio.? Show that the theo-
retical limiting values of Poisson ration are -1.0 and 0.5. Desribe searles
method for the determination of its value. . (1999, 2001)
OR Explain the value of poisson ratio in less than cone {2009)

Seol" : HOOK’S LAW :- According to Hook law, within elastic Ilmut strain is
duectiy propartional to stress i.e.

B &1 o gd‘ﬁvﬁﬂq?WW?ﬁﬂTﬂ%WW ufdas @
U BT /| 37rfq,

Strain d Stress

-%t?fi = E = Constant

rain

This constant E is called the modulus of elasticity. Since strain does not have

any unit or dimension therefore E has the same unit and dimension as stress.
59 Fraaies E & ucimen uites $8d € | Jfe Refa a6 o s a8

BIH &, 31T E &) 98 $HIs B & O ufcraer & |

POISSON’S RATIO :- The ratio of change in dimension to the initial dimension,

perpendicular to the direction of the forces is called lateral strain. Within elastic

limit, the lateral strain is proportional to the longitudinal strain i.e, the ratio of

lateral strain and longitudinal strain is constant for the material of a body. This.

constant is known as Poisson's ratio.

If B and o are the lateral and longitudinal strain respectively, then
QIESA BT Agura:— 3 #§ Igang o1 yRfBre @9 9@ orgu on 99 @51 en &
g B B, ured gy waenar | varen W & Mok ared ey orgdsd famfa &
Wjﬁ@ﬂ%ﬁﬁﬁ%ﬁﬁ%ﬁﬁﬁ%ﬁ@ﬁ%%ﬁﬁ%ﬁmﬁmﬁ
giar 8 éﬂmﬁmmﬁwmﬁﬁr
Poisson’s ratioc o = S/a ‘
LIMITING VALUES OF o :- ‘ (SU-2016)
We know that L

3K (1-20) =(1+0) 27

Whre K and n are essentially positive quantitive. Therefore,
(i) If Poisson’s ratio is a positive quantity, then both right hand side and
left hand side of above equation must be positive. this is possible when

() afd o o garHE de 8 a9 Iuddd GHlo HT Y ust T i 987 of
IS B TRy, I8 99 & W99 8§ SE
{(1-206)> 0

or, ¢ <1/2 OR 0.5

(i) if o is a negative quantity, left hand side expression of the above
equation will be positive. Then, the right hand side expression must also be
positive. Hence

(i) I o To =ones dear § 99 Sugad 9o BT FigT U HHHS BT I
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TiaT ger ot SRS 81T ARy | 1Rl .
(1+c )>0or o >-1

Thus the theoretical limiting valves of ¢ are -1 and 0.5, i.e.

-1<o <0.5 _
SEARLE’S METHOD :- The apparatus consist of two exactly equai rods AB
and CD of square or circular cross-section. They are connected together at their
middle points by the specimen wire and suspended by silk threads from a rigid
support. When the rod suspended, are brought near to each other through equal
distances and then released, they execute tortional vibrations in a horizontal
plane due to the couple exerted by the specimen wire on the iwo rods.

FaEIOT § <) gufhR a1 gandR aRTSE B Yd G TS AB Q9 CD ferar sy

| I B agd weyg fasg R U@ AUHT 9’ 9 g9 S
2Ed & ok uw 319 R |} Us faew @ g/ & e B |
BT &1 wa 3 Pcig oe 99 g9 @ d8d U gUR @ THIY I/;.B I P
STFR BIS oY & aY 3 &R g d ERUTS &I~ THE B § | /J{ a /
ST 5 QW aR R S R Jedw BIar 81 7 s m/

YOUNG MODULUS :- Let 0 be the angle through which %zzmz&zzz‘zz
each rods turned from normal position. Then the angle .
subtended by the bent wire, at the centre of curvature O \L/,-.
is 20 and obviously. E’
AT YENH— A GAS TS I @ Rafr | 6 e
1o .} gErRD ol 2 (R 2)| % WwHAT O BE W YP TR FRT ST~ BT 26 &

ey
I = R.20
Where R is the radius of curvature of the bent were. From the theory of
bending of beam, moment of the internal couple or bending moment
=YIlg/ R o
Where lg is geometrical moment of inertia and Y is young modulus of the material
of the wire. T
Moment of the couple = Yig.20 /1
For awire of radius r, lg=nr*/ 4
Therefore Moment of the couple = nr‘;(e
This couple produces gn angular acceleration d?0/ d t? in each rod. If |
is the moment of inertia of either rod AB or CD about the thread then the mo-

ment of the couple is _
g Y Toe B # evig @ver d?20/d t I~ S | Ff TR & Uy faal

we AB w CD @1 s el | &) a9 37 smgel 80|

d%e
B —
at
Hence the equation of motion is

2 4
d-e ﬂf‘\"gzo

- gtz =2l
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d2e ar'yY T T T
— + 6=0 el D
dt? 211 : .

The above equation represents a

or,

simple harmonic motion of period.

Y T, .
c=— =27—2 1, therefore aj ; 18
2n 2T1 _ '
Y- 87;"]4
T1 r

MODULUS OF RIGIDITY :- Now the suspension threads are removed one rod
say CD is clamped horizentally to a rigid support and the other is given a slight
rotations so as to twist the specimen wire. When released, it executes tortionej
vibrtions about the wire. Its time period F, is determined . Then

- \@mgw:—araﬁm#urﬁﬁaaﬁmaﬁ?wmwcoﬁwaﬂm
%W\mﬁmﬁmmwmgﬁwﬁmwﬁmwmﬁaﬁﬁmﬂw
¥ Yo o) US| U8 AR B IEd TR HY~ Hbe Bl 2|

mgwswsrrdﬁﬁranaﬁvmmrmﬂﬁ

I
T, =27\~

4
or, Tz =27 R [ C= E.’.{[_,E]

nard 21
8l
Of, N=——gg  oen (2)
T2 r
POISSON’S RATIO :- From equatiom (1) and (2), we have
5"
y _ b
m 2Tt
But poisson’s ratio
T2
o=—=25-1, therefore
2Ty
2
o= I_z_z_ -
2Ty

Ques(2) Obtain the depression at the free end of a thin rectangular light

beam clamped horizontally at one end and loaded at the other end.
(2000,2013)

Sol" Let a beam of length | be fixed:atits one end Aand loaded with a load W
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d2g artY T T

dt2+ ST 6=0 G D

The above equation represents a

or,

simple harmonic motion of period.

Y T, L
oc=— =27—2%2_ —1, therefore - 18
2n 2T1 _ '
Y- 8:’21'|‘I4
Tr

MODULUS OF RIGIDITY :- Now the suspension threads are removed one rod
say CD is clamped horizentally to a rigid support and the other is given a slight
rotations so as to twist the specimen wire. When released, it executes tortiona}l
vibrtions about the wire. Its time period F, is determined . Then

- mg@:—mﬁaﬁ#mﬁﬁa&ﬁmsﬁv@mwcoﬁ@smm
%w%\mamﬁaiaﬁmwamgmwﬁmgmﬁmwﬁm@agﬁmaaﬂ
¥ Yo o) AP | U8 IR B AEd TR HY~ Hbe Bl 2|

mgwswsrrdéﬁmgaﬁvwmrmﬂﬁ

|
T, =27,/

4
or, T2 =27 ,_Z_I_l__ { C= E‘EE__E]

nard” 2l
8zl
Of, === oo (2)
T2 r
POISSON'S RATIO :- From equatiom (1) and (2), we have
5"
y _ b
U v
But poisson’s ratio
T2
o=—=5-1, therefore
2Ty
2
o= Iz_i -
2T,

Ques(2) Obtain the depression at the free end of a thin rectangular light

beam clamped horizontally at one end and loaded at the other end.
(2000,2013)

Sol" Let a beam of length | be fixed:atits one end Aand loaded with a load W
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at B. Let the end B be deflected to the position B’ under the action of the Ioa
W.consider a section of the beam as at P, at a distance x from the end A. Th
moment of the bending couple due to the load W =w (i - X)

Wrwé’mﬁ?ﬁrﬁmz%am:‘*rwﬁﬁAtRf%m%aenw%BWWW
é‘tmﬁrf%ﬁraﬂwwﬁzmwwe'ﬁwﬁﬁm%; AT A RIR Y 38 x 9) G T @
T P WR B MR B Rep $ET g ATl BRIT W= Wl - x)

The bending moment

= YI/R .

Where Y is the young Modulus of the material of the beam, I geornetrical
moment of inertia of the section and R the radius ofcurvature of the natural axis
at the section.

W8T Y 4 & aref @y @ nes 2, fqﬁﬁ?ﬁrmﬂﬁ%ui?rsaangvféaanﬂm?ﬁ%ﬁ
B WHIRG 3 BT gar Brear ay &) :

- /f(—— £
Mhus, 7
YI/R=W(lx) <o . (1) a7
The radius of curvature R is given by the equatior 3
‘ 3/2
{1+(dy/dx)2]
d?y/dx?

¥ ! W
Where y is the depression of the beam at a distance x from the fixed end. Since
y is small, (dy/dx)? can be neglected in comparison to 1. Hence, we get

R=— .
d?y/dx>? _
Substituting for R in eqn (i) above, we have

YELY 2w (1)

dx? 5
d w
OF, a‘";—g— = ';'Y—I ("‘X) ........... (2)

Integrating equation (2), we get :-
5 _
AN Pl
dx  yI 2

where C, is constant of integration, Which can be known from the con-
ditions of the probtem. One such condition is that at x = 0 .

dy/dx=0

Applying this condition in equation (3), we have C, =0 and thus
dy _ W{, x2
ax = Vi lx-———2 ........... (4)

It is pointed out that at P, the slope of the curve tang = dy /dx, 0 being
the angle between X-axis and tangent at P of the bent portion APB".

g P W% 9% &7 gret tang = dy /dx et O g 9T APB’ B farg & Wiy 3 st
Nl AT X~3HeT B &y BT BT ¥

Thus



2
ay - tand = \{V ;.(Ix-—}i( —]
ax | % 5% 2
Integrating cnce again,
_w (1x2 X3
y ko 'Y_‘I ikl“—zﬁ" - ?‘ .......... (4)

Where C, is another constant of integration. But at x =0,y = 0, hence
substitut ing these values in eqn(4),

gt C, g wHrwert Fruare 2 1 g x=0 = y=0 g9 91 ®I Iy THlo
¥ Y@y U 'MW O 8 {»

we get, C,=0

Thus, the expression for the depression y at a distance x from the fixed

end is
[ e 3
= WIS Xl (5)
Y IL 2 6
At the force end , x =l and let y = 3, then
s=WIP_P
Yil2 6
w(iE B -
=S| == || e
or, ( Vi L 5 = (6)
Far a beam of rectangular cross-section of breadth b and depth d,
I=bd*/12
Therefore,
AWP
O = ———— ieeeeeee 7
Ybd® o
For a beam of ciiwular cross-section of radius r,
) l=nr*/l4
Therefore,
4W 13
(s — _T__
3ar™ Y

Ques(3} Abarof1 meterlong, & m.m. square in cross-section supported
harizontally at its end and loaded at the middle is depressed 1.96 m.m by a
joad of 100 gm. Calculate the young moduius for the material of the bar?

given g = 880 c.m /s°. (2000)
Sol* -+ The depression of bar loaded in the middle
' 3
Y= __W_{_ﬁ
48YIg
Now

W= 100gm = 0.1 kg = 0.98 N
y = 1.26 m.umn = 1.868 "~ 103%m
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| TG HTERAT BT [OTid Heelal 8 | T8 K A yaRia fvar owar & | ufey 51 95%a 98 96
'aﬁmﬁﬁﬁ‘!ﬁﬁPmtﬁmﬁwﬂmﬂfﬁ TG V ¥ ggaA1g 81 al

K — PV
oV |
The quantity 1/K is called the compressbility of the material.
MODULUS OF RIGIDITY :-
The ratio of the shearing stress to shearing strain is called modulus of

rigidity and is denoted by letter . The shear strain is measured in term of angle.
Thus if § is the shearing stress and 0 is shear strain, then

ﬁﬁ%ﬂﬁ'ﬁﬁ%ﬁ@ﬁﬁﬁ%ﬂﬁ@%%ﬁ%ﬁ%{ﬁ n
uaRia w81 Aeus gy & S @ ug 3§ gaidfa oxd &1 o S 9f2 Regs gfgs
N o Owus (el @ ar

=5
7 2]
Its unitiis same as that of stress.
POISSON’S RATIO (o) - (2013)

The ratio of change ig dimension to the initial dimension, perpendicular
to the direction of the forces is called lateral strain. Within elastic limit the lateral
strain is proportional to the longitudinai strain i.e. the ratio of laterai strain and
longitudinal strain is a constant for the material of & body. This constant is known
as the poisson ratio . .

fa ¥ Seema @1 R QA g, o B gor o Ry @ A T, MR ured gy
FHET & | Ferreiy XA & e wred Ry argdet Aok o YHHIFART B & 3reifey ured Ry oy
AR gl & g v ST R 39 P FY @rmorT 9 G o BB &)

If B and o are the laieral and longitudinal strain respectively, then.

B

Poisson's =
. (0-) [#4

~

Qu%(S) Derive relation between Y, K, nand ¢.?

(GKP-2002, 2012,2014,2015,2016)
QR Write short notes or relation between elastic constents. (2008)
Sol": (I) RELATION BETWEEN Y, K AND g i

Let ABCDEFGH represent a cube of unit side. Let us consider a force F, which
acts normally and uniformly on each of it six faces in the outward direcetion.

Since each force F is acting on unit area, these forces representing stresses’.
HFT ABCDEFGH 31 ol Uh 99 2 | A1) b 927 F 5 6 yoirsll Uy arey

e # sifversaa o1d wvar 21 R uw T F &1 eawa & sy &t arar 21 -
¥ ¢ and f be the linear and lateral strain per unit stress i.e. if o be the
increase per unit length per unit stress along the direction of stress and f be the
contraction per unit length per unit stress perpendiular to the stress then the
elongation produced in the edge AB dueto F = F & and contraction produce is

FR .

AT A Tt yiaae B yalRie wxan &1 9w o qen S ufr g1E ufaga v
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aAaT AR urediy gfgega & srofq afe o ufdga &7 fRen F ofa gord aitvaa ofdr g8
g W gfyg 8 der B uftee & wimaa ufy 3o ufage i o 18 R @ B
ai Yorr AB S 3fEa® a1 F & aRoT F ¢ 8 @ar Sea=1 argas F 2 8w h

Hence the sides of the cube become - ;
AB=1+Fa-FB-FB=1+F(a-2B) T i

_ B

A
BF=1+Fa-FB-FR=1+F(a-2B) /’F____,F
Foa—da

BC=1+Fa-FB-FB=1+F(a-2pB) 1 3
Hence the final volume of the cube is H l ‘
ABx BP x BC =[1+F(a-2¢3)]=1+35=(a-2;3) 4 ‘,’: €

Thus change in volume = Final volume - Initial volume
AV =1+ 3F(a-2B) -1

AV = 3F (a-2B)
3F(a—2 5
Volume strain = (al B - 3pa-2p

Therefore the Bulk modulus of the material of the cube is

. Streed L 1
Volume Strain  3(a —2/0)

N

or, Ty 3(1_2;/34)

But « in the longtudinal strain per unit stress, therefore y represent

1
young Modules of electricity i-e YV = i

and also B/a = o = Poisson’s ratio.

Therefore,
_ Y
*"—“**"3(1 e (1)
(1) RELATION BTEWEEN Y,%AND o :- (SU-2018)

L.et ABCD represent the front faces of a cube of side L. A tangential
force F is applied on its upper face AB and the bottom face DC is fixed.
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mng-ma‘?wﬂHzﬁTwwABCD%IM%’@WABWWWW
a5 F e Sar @ oiafe e Rk DO @t ReRr <@ 14 1|

As a result of this force the cube is sheared to AB’CD through an angle 0. Then
59 97 ® ufRvnTH wWwT ' HorT 4 A'B'CD &t fasfag g wrar € |

AL A B I B F
7 A
FERN >t
\ //Nf
NN L7 /
/ >/ ol
LI N
-~
1 27 a
D Fixed C

Where the displacement AA' = BB' = £
Shearing stress

F
" Areaof the uppe;?éce of the cube
T=" |
LE‘

Coeflicient of rigidity n = T/0

Let ¢ and [ be the longitudinal and lateral strains per unit stress
respectively. Then extension along diagonal DB due to tencile stress = DB . T.
c and extension along diagonal DB due to compression stress along AC =

gt ¢ T S afy ST uftaer o¥ argded e urdaty fagly €1 e Wi
sRee @ sRT RAet DB @ asagfg e =DB . T. « Tl ArpET WfAgs WY BRI
fapot DB @ @ea gfs s AC @ egRer =DB. T. 8

Total extension along DB

=DB.T. (@ + ) =L2T(au+B)

{_et us draw a perpenducular BN on DB’. Then increase in the length of
diagonal DB is practically equal to N'B’. As ¢ is very small, therefore angle
AB'C is nearly 90° and angle BB'N = 45°. ~

a/g DB’ w-arg BN @ien | @9 Reet DB & evaid # gga syasradr N'B’ ®
wIER 2 | S @ sga vier ¥ oagd B AB'C e 90° & FRIEX AT ST bl
21 wer w1 BB'N = 45°

' 5 ,_BB ¢

Thus NB = BB’ cos 45° = =

. ' = '\5 \/E
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£

or LvV2 T(« + B) = =

sl 1
or " g 2(a+pB)

I

But, TG:)'—; (zi) G;..) - e 2(1 i/Ba/ ) 2(110)

)

- Y |
n' - 2 (1 T o,j .......... (2)
(I) RELATION BETWEEN Y, K AND H :-72
From Eqgn (1), we get
22 (1-20)=Y/3k
and from eqn (2), we gets

2?-?.0'2/?,l

Adding the above two equation, we get-

Y. Y 3K+
el e or, 3==Y( f‘l)
n 3K . 3Kn
thus, ' -
S
Cy=20K 3)
- : 3K+n
This may be written as
9 _3K+n
Y K
9 3 1
or . 7 ""--—r*]- +ﬂl‘_<— ............ (4)

"(N) RELATION BETWEEN K, EAND@:C.
: from equation (1) and (2) we have
Y = 3K (1-2¢6) = 2n (1+0)

or, 3K (1-26) = 2n (1+0)
or, 3K - 6Ko = 2n+2no
or, c (2n+6K) = 3K - 29
- 3k-2n
or, o 2r]+6K ............. (5)

Ques(6) Show that the shearing strain 0 is equivalent to the exten-
sional strain on compressive strain and it is equal to the haif of the

shearing strain?

(2003, 07)
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Sol": Let atangential force F is applied to the upper face AB of a cube ABCD of
each edge L, with its lower face DC fixed, so that it is sheared through a small
angle 0 into the position A'B’, with its perpendicular diagonals DB and AC extented
to DB' and shortened to A'C respectively.

AT L 4T @ U - ABCD @ Su9Y oIl AB W wRila 91 F &9 8IaT § a2
3T Frerell Yot DC 1 Rek Y@ e & e & a8 2ior 0 & Reafy AB & wea fAsia
B T & Safs 39S o gad fagel DB der AC 99 DB a% 98 S 4l AC §% 9 W
g1 : -

A - p' F
M~ N <.
J. N ,4“' N/l
7 ™ e /
,%/ AN -
e \\ 7
!// a1
D C

The shear being small, AAMA' and A BNB' may be assumed to be right
- angled triangles, so that NB' = BB’ cos 45° = BB’ / V2

<f% Reus 9ga vler § e AAMA' @ A BNB' @1 waaatoia wafgerg B
AT o gear € R NB' = BB’ cos 45° = BB’/ V2

since AB =L, we h.ave DB = DN

= JI:Z +12 = 12

tensile strain along diagonal DB

_NB' BB _BB'_6
" DB V2(L2) 2L 2
- BB' -

N

Similarly, compressive strain‘along diagonal AC
AM _ AA'Cos45 _  AA" '
AC AC J2(LV/2)
M8
2L 2
Thus, the simple shear 0 is equal to half a tensile and half a compres-
sive strain at right angle to each other:

I AP fIEUE O RIeR BT § afvd fAafy @ o & don s Rl &
A B, TGP AV YH-GIR P TEId g |-

@) Ques(7) Write short notes on Bending Moment ? (2003, 2011)
What do you understand by bending moment? Derive to expressionfor a
uniform beam. (2009)

Sol" A rod or bar of circular or rectangular cross-section, with its
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length is very much greater than its thickness is called beam. In the
bent position the upper surface of the beam becomes convex and the
inner surface become concave as shown in the figure.

UF JEIATHIR AT JTIATHR kBT H1 88 A1 TTHT Rrad) awaid gya)
Arerd 4| —erar-r SATET g1t @ Ny HESATT 2 | zj,zf"! Rerg A €I w1 I gdg oeaa
& WTar @ | dor eafy® Waw Agder g€ wrar € ot\r fF frw ¥ fafyg 2

———Upper Surface

Lower Surface-

The inner portion of the beam to be bent into a circular arc. are shown
in the figure. Let the filament PQ has acquire the shape of an arc of circle of

radius R fig, Then
 PQ=R#S

If P’Q’ is the filament at a distance Z from the neutral filament then, we have
PQ'=(R+2)6
Therefore the increases in the length of the filament is

5=PQ -PQ =(R+Z)0-R0 . .

or, d¢=20

and the linear strain produced in the filament is

=028 2 :
i R6 R

Thus we can say that the linear strain produced in any ﬁlament is
proportional to its distance from the neutral axis.
Now the young modulus of the material of the beam is given by

AT T HE Wpd # ¥ [FN Yag # Soow Wi R argmwreeed Har &
sva%if{wmamﬁ{ﬁa’ﬂ

Tensile stress ]
= * Tensile stress

- or Y = -
7 R

Linear stress



- PF-13

. YZ
or, tensile stress . = B

Now consider an area dA at a distance z from the neutral surface.
Therefore the forces on the area

SA = stress x Area

and moment of this force about neutral filament
74 _vz2
o 3 OA. 2= R OA.

Since the moment of all such force about the neutral filament is same

direction therefore the total moment of forces acting on all filament of Beam
YZ25A

:.:Z _H_Fi__"

It is called the bending moment of the beam. The quantity 28AZ2 is

called the geometrical moment of inertia of the beam and is denoted by the
symbo! Ig.
' = A w1 s st wed § 1w LOAZ? BT 4 B ST SIS AT
Fad § won 3 v Q 1g yee B T -

Thus bending moment of the beam

.Y,

=g'9

The g vantity Ylg is called the flexural rigidity of the beam.
Thus

Bending Moment of Beam
= Flexural Rigidity / R .
OQues(@)Differentiale between angle of twist and angel of shear and thus
find an expression for the couple required to twist a uniform cylinder of
length £ and radius r. (GKP-2001,2014)(SU-2016)
OR Explain the difference between angle of twist and angle of stear
Derive and expression for the twisting couple of an Uni-
form solid cylinder. (2008)
OR What do you understand by angle of twist and —
angle of shear? Derive the expression for tartional rigid- ﬁ’ A l
ity of a cure clamped at its one end and twisted at the | !
other end. (2010) : Lo T”
Sol" Let us consider a cylindrical rod or wire of length £ T g 1y
and radius r clamped at the upper end and twisted by a €. Ty
couple at the lower free end. By doing so, each circular
cross-section of the rod rotates through an angle. This
angle is called the angle of twist and is proportional to the | o
distance of cross-section from the clarmped end. Ifthe angle e 2
of twist at the frec end is 6, then '

[qET UF AP B8 57 TR ooy arars (g =sarr Fig:(1)
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:%w&ﬁﬁwﬁméammﬁ%ﬁ#ﬁﬁ?ﬁwwa%mﬁamr%tﬁwmﬁww
BT IAE JEADBR IRTBT T DIV F YA ST & | UE DIV Y37 HIVT HEeATar & To g8 RR
¥ UR=T B gl B g g 21 9l wady RR 9R ¥e9 17 0 &) @
re=¢6=BB" ... (1) -
Where ¢ is the angle of shear. .
In any section normal to the axis at a distance, say ¢ from the fixed end,
let the angle of twist be 6° then
e g A ——— (2)
from eqn (1) and (2) we see thatas I' <1, hence 6° < 9 .

:\ i

ot
RN |
= Y
:~ ....:B ’B",/

(;)ﬁ—‘F:ig:(EJ

o

TWISTING COUPLE ON A CYLINDRICAL ROD :-

Let us consider a cylindrical rod of length ¢ and radius r. The upper end
of the rod is kept fixed and a twisting couple is applied at its lower end in a
plane perpendicular to its length.

(b) Fig:(2)
fragine the cylinder to consist a large number of thin coaxial cylinderical shells
and consider one such shell of radius r, thickness dx and length £. The angle ¢ is
the angle of shear. To understand this, let thiscylindrical shell were cut along AB
before twisting and flattened out, it will form a rectangular plate ABCD, but after
twisting it acquires the shape of a parailelogram AB'C’'D. If 6 is the angle of twist
at the lower end of the rod, then
Wvﬁéawwf%rﬂaﬁmﬁfam&mr%;vfgzﬁrvcr@rﬁmﬁw%ﬁm
sﬂa%f?fa“éﬁ*«*uiftr?nmﬁmquwmm%m?mamréa%wmﬁaaﬁﬁf
AT 9ET BE UGS WA AT AR AA BT 977 | o W v YAy Jot
foraaY rear r, Werg dx qom srarg ¢ 2 ®IT ¢ fawas HIoT ]| 3% @HA & faQ |rEr
ﬁa?a%r@iergﬂqaz#ﬁaa#ABa#aTaﬁmmmm%%ﬂmwwmm@e

r
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ABCD &7 frafor 3ar & o U89 & qIg g8 U [Awa] 9gqs AB'C’D &7 3THR U&7
Har &1 afy Froe R w Yo FivT 0 &, a1
BB’ = AB.d = OB.6 or l¢p = x0

x0
or, b=—
g .
Let F be the tangential force acting on the base of this thin cylindrical
| shell producing a shear. Then

F
Tangential stress =
g Area of the base of the shell
A D
\ 3
N 1\
o\ M\
A\ \
% \
\ Y
A A
\ \
hY \Y
\ A
1 A
\ \
\ A\
A . §
B D { <

Fia:{2)
But, Area of the base of the shell
= Circumference x thickness

= 27X.dX

: _ F
Tangential stress = S dx

If 1 is the modulus of rigidity of the material of the rod, then
Tangential stress

l’]:

shear
or _ F . F |
’ n 2rrx.dx.@ 2mx.dx x6
=% F = grw?ﬁ.xzdx

The moment of this force about the axis of the rod

_ 2mn@.x%dx.x _2mné
| 1
This is equal to the couple required to twist the shell of radius x and
thickness dx through an angle 6.
: agwgmiﬁwﬁﬁr%vhxﬁwemrtﬂaﬁdx$é~a92ﬁw%%&3mﬁ
& T g 8 2 .
Intergrating the above expression between the limits x = Oandx=r, we
get the total twisting couple i.e.
Twisting couple on the rod =

.xadx

T

= jj}'ﬂg x3 dx

0

T




F-16
4

E _2mn8 r7 _ 1TI"|!‘ 0
T | "4 21
Thus the twisting couple per unit twist
_x_mnR
9 27

Here C is known as torsional rigidity of the cylinder.
Ques(9) Find the poisson’s ratlo of a material whose volume is not changeable

at anypressure? (2003)
Soln The relation between Y, K and o is
Y
—=1-20
3K

For, a hypothetical substance, if the Poisson's ratio
o= ;— then
..:(.. =0
3K
Since Y = 0, therefore
. K=
An infinite value of buik modulus means that the volume of the sub-
stance cannot be changed by pressure or, it is in compressible.
JTE: JMTAT ONF PV I HIF BT qdaid 98 8 (& a9 & g 9= &7 3=
AT AET O APl AU ST s 2|
OQues(1 0) Show that a hollow rod is better shaft than a solid one of the
same mass? {GKP-2001,2003,2007)(SU-2016)
Sol" : The torque required to twist a solid cylinderical rod of length ¢, radius r (of
a material of coefficient of rigidity n) through an angle ¢ radian is
T 3 9HTBR Bs oras) orarg £, BT r (gt 4 gedr e i 3) B DT
R Va9 ®xw & o1y anaegs a9 amgel 8Rm
wnrd N2 (ré)

z= 21 ¢ = —T ¢ ......... (1)
If the rod is hollow with internal and external radii r, and r, respectively,
the tarq ue, required to twist it though the same angle of ¢ radian will be
afy v wieen 8 s siaRe qar area Broadl saw r,ar, § @ g6
A P19 9% U89 B @ Y Imawas g1 et 2

Ll )
2¢

' 2 _2 2..2
. . 4] >~ —r > 4T
L1 L ‘2,)(2 1 )¢s reeeeen(2)

The masses (volume x density) and lengths of the hollow and solid rod are
equal. Thus
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t(2-r?)pl=nrps
or, (r,2-r2=r2
Substituting r? for (r,2 - r.?) in eqn (2) and comparing it with eqn (1), we get

or, —>1 or, T'5> %

Thus the tarquetrequired to twist a hollow cylinder is greater than the
tarque to twist a solid cylinder of the same mass, length and material through
the same angle. Hence a greater amount of energy will be stored in the hollow
cylinder shaft than solid . For the same reason, the hollow cylinder will be stron-
ger than a solid one. Hence a hollow rod is better shaft than a solid one.

am:aﬁqﬁﬂwﬁﬁmmﬁ%%qumg#wwaﬂmré
aexrqarafaa‘rﬁaﬂmﬁfkmmmmwmrgﬁﬁﬁmrmlam:@@éémwﬁ
Wvﬂkwﬁﬁmmﬁrﬁe?wﬁaﬁmmmww%@mmé

Wﬁﬁmwmmmamérma%mmaﬁ:@’t@mémﬁa‘méma‘;wﬁ&mrm
BS &1

Ques(11) Explain why the steel girders and rail are made with their section
in the form of capital letter I. (2000)
Soin Girders standing on pillars at their ends suppoit load, s0 that the girder
suffers bending. Its middle part is depressed and the neutral surface lying in the
middle of the girder experiences no strain. The filament in the lower part of the
girders suifer extension while those in the upper part suffer contraction. These
" extensions and contractions increase towards the outermost filaments. in
comparison to inner part of the girder, outer parts are strained to a much greater
extent. Therefore, the top and lower surface of the girder should be stronger
than the inner parts. Thus the inner parts are made of small width while the
upper and lower sufraces (cross-section of the girder) are give I shape. In this
way, without affecting the strength of the girder, most of the material is saved.
The same is the case with rails.
frs=g (mg%aﬁﬂq)aﬁ%wﬁma%?ﬁ%wﬁﬁiﬁmwﬁwm
SRt & Ry S sraeia vegy o ¥ D W AT Y B & gor NS B w5 3 Rerg
AT A8 B [A@mfa amya =87 o £ RS & freraer W 3 o 9fy orpig wxa
%maﬁﬁw«wmm@ma@mmﬁﬁlmq%ammﬁmwmaﬁ
m%ﬁ%l&mﬁl@ﬁ%mﬁ@ﬁﬁm@&mweﬁﬁmmzﬁm
§ e AaR® 9PT B dierd & Y 81 | wafh Sud el Hrerey qnT (<9 & ufReses)
Imémﬁiwwﬁmﬁrﬁaﬁmﬁﬁwﬁaﬁmmmmﬁﬁm
g1 9 IS @ B9 F f) Sar 2y
Ques (12) What is the nature of curve when the mean depression d in a
bending of beam experiment is plotted against corresponding load. W.

Explain with the help of reievant formula. (2002)
Sol° in the bending of beam experiment the Mean depression 3 is given by,
_ L (W) '
4bd® " S
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If a graph plotted between the mean depression 3 and the correspondihg

load W then a curve as shown in the following figure is obtained. The nature of
Curve is straight line and the slope of this line gives W / 5.

_ aﬁwwmwﬁmmmzﬁmwﬁfﬁﬁmma}ﬁﬂﬁ%ﬁm
STPR T 56 WI<T EFI| 956 &) Uiy Eef Ym @ ok 59 ¥ =7 grer 27 W/ 6,

Ques (13) A beam of a square cross-section is stiffer than one of circular.

cross -section of the same material, mass and length. (2000)
OR

For the same or cross-Sectional area show that a beam of square section

is stiffer than the one of circular of the same material? (2005)

Sol" : Let a beam is clamped at one end and loaded at the other free end.
Depression produced at the fre e end is

3
s = W
3YI
for a rectangular beam | ) N
I =bd®/12

Where b and d are the breadth and thickness of the section. If the
section of the beam is square then b = d. Therefore, .

<Tef bamdm:qﬁi@ﬁaﬁaﬁsﬁamvﬁeé%‘wf&éﬁwzﬁmﬁ‘mm
g ol b = d, sragg

4
I b~
12
Therefore depression 8, for this beam is given as
s o= WP awP 0
T svwinz - vt
for a beam of circular section,
. I=nrt/4
Therefore 8, for circular beam is given as
wi PNV
6, = = i (2)

3Yzr*1a  3Ynr
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From egn (1) and (2), we get

& _ AW smt 3wt

52 vb* 4w b? |

But the cross-section of the two beams are equal therefore
b?=m2 or bt = mrt

Thus,

5 _ 3wt _ 3

62 rd ™

As 3/n < 1, therefore 5,< 3,

That is, the depression at the loaded end of a square beam is more in
comparison to circular beam. So a square beam is stiffer than a circular beam.

amiﬁavmé’ma%ﬂmaﬁfﬁﬁwwmﬂéﬁfﬁwﬁmm%i
arh: qTBER 99 geaTER W @) gor F Aod 2§

' Ques(15). Define the relations between elastic constants ¥, K, and o and

if the value of Poisson ratio is 1/2, what does mean (2011)
Sol" See question no. (5).
We know that

Y
—=1-20C
3k
- Y
If paison's ratio o = 1/2, then = =0

Since y# 0 therefore k=
An infinite value of bulk mokulus means that the volume of the substance can
not be changed by pressure or it is incompressible.
amﬁawmgwfmwmqmmaﬁ%ﬁﬁmmwﬁmwaﬁ
g O AT & eifa ey BRI B
Ques(16).Define modules of rigidty. Descube and explain how Maxwell's
needie can be used to determine dynamically the modules of rigidity of the
material of the wire. Compare this method with the statistical method.

(2013)
Sol" : MODULUS OF RIGIDITY :-

Fodl YoNd —
The ratio of the shearing stren to shearing strair is called modules of

rigidity and is denoted by letter M. The shear strain is measured in term of
angle. Thus if S is the shearing stress and Q is shear strain, then

freus uRae aur feus RER & SFdE &) gedr ONd Hed € a1 g 1
mm%;%wﬁqﬁﬁmﬁm%|wwmmsm(m
¥ ufee) 8 denr Q suws (Aeus) fAgfy &,

S

T]=6
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lts unit is same as that of stress.

S AP, gfad T AES S 2

The method, using Maxwell's needle for the determination of rnodules
of rigidity of the material of a wire, is a dynamical method. it consist of a speally
designed body of variable moment of inertia suspended by a iong and thin vertical
wire, whose upper end is clamped rigidigy. The body is made of a long hollow
brass tobe of length L in which four small brass cylinders are fitted, two hollow
and two solids, each of length exactly L /4.

Agudd fAf¥a &Y galw g1 Bl ar # gqief gedr Lomw sTa
HIAT UH AeATeHS fofer 8 | g99 ¢sp faviy yaR 4 dar fFar a1 s grar
g fa®st sgtg srgel agar on w@ar 8, st (Yvs @) va gad aen @
Beglfex a g1 fHafraa fear srar 2, fogsr S99 RIRT g3 ®Y @ $91 &8rar
2| fivs ¥ L &=1d 3 us o1 @i dr 919 &1 999 () glar @ e TR B
g B 97 B9 € ored § 37 Iaa #19 € 991 < 3 99 819 € 9T e @57 onars
L/4 21 g1

When the body is slightly rotated in the horizontal plane and releasesd,
it performs tortional osccilations aboutthe wire as axis. Determining time periods
of thes oscillations, we can find the modulus of rigidity of the material of the wire.

w19 favs @ Afast ae # <rer garar S § 9 fivs e+ e, aR @ aRa: e
ST ¥ Wﬂa?wa}wwwmmmﬁmwmwwmwa*
THEORY AND PROCUDURE :-
Rigia g fosafaley —

First the solid cylinders are placed in the inner positions and the hollow
cylinder in the outer possition as shows in the following figure.

[AGAH 319 I Y 3rax B Rl § qon @RI a9 @51
grer o1 5 R 3§ fRar & waa & b /

The system is allowed to perform tortional
oscillation. Let T, be the time period of vibration, then

) [ L.
T, =2m, /-6 ............... 1) SO I I S

Where 1, is the moment of inertia of the suspended
system about the wire and C is the tortional eovple per unit twist of the wire.

oref I, Freifiaa fisra @ srew amget ser & U 3§ ar @ ala: § @y C e 3
Vo5 g ufd g1 gua 8

Now the position of hollow and solid cylinders are interchanged. Now if I, be the
moment of inertia of the system about the wire, then the time period, is given by

319 WIS oI+ 2T 319 Jor+ &7 Reafd &) sgor faur onar 21 a9 ofy o &
uRe: fFera @Y wgew anygol I, & o snad w1 8hm —

I
T, =27 -—é« ............... (2)



_ F-21
Now, from eg" (1) and (2) we get

2 -~
o4, —1) -
T T2 -T2
2 1
e’ : ,
But we know that C = Y Where ¢ andr are the length and radius

of the speeimen wire respectively. Therefore
4

TN 4ﬂ (I,-1)
20 17 -1/
271t4(]1, -—I)
.................... 3
(T2 Tz) ( )

LetI , I'and I" be the moment of inertia of the hollow brass case, solid
and hollow cylmders respectively about the axns passing through their centres of
gravety and perpendicuiar to their lengths.

A I, T aen I span: Wl el o 9ot @l wrRae a?ﬂ W S5D [HA
B A TG 'arz»’i qAT SIS @ ehaag wig b uRka: g gl 81

As the length of each cylinder is L/4, the moment of inertia cof the needle

1, about the wire as axis, when the hollow cylinders are placed near the ends of
!he hollow brass tube, is given by

HfH Tde qad O wrarg L4 R, e ke ﬂcﬁva‘;qﬁ’d srewa amget (1)
ety @REe! 99w B 91} fTE O @ Tqr g, 8o

, SN2 2
I =1,+} I'v+m, L) 2} 1 m, (BL)
4.2 4.2

2 - 2
‘ 3
or, I, =1,+2I'+2I"+2m, (—E—) +2m, (_i%) ........... (4)

4

or,

Where m, is the mass of each solid cylmder and m, that for each hollow axis.
zﬂﬁm e SN 419 BT WOPE € Wer m, sra?rcﬁza‘naé A BT G 2 |

Samtlarly, moment of inertia of the aystem L. when the solids cylinders
are at ends, about the wire as axis is

=&y e 9@ ar @ aRe: sed gl |, we 5 <1 S M B AR w
G T L

2 2
I, =1, -+ 21+ 21"+ 2m, (3;‘) +2m, [%) ........ (5

Substituting eq” (5) from eq” (4), we get

2
I, -1, é—;(ml“mz)L/,( .......... (6)
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Substituting the value of (I, —1,) frem eq" (6), to eq" (3), then we get

— [ 2p '
27‘5(1‘1;11 nilz )i L ieeresersecesssesas (7).
(17 - T)r? |

- Where T, and T, are the time period in the two cases are calcuiated
with the help of telescope and scale arrangement. Substituting the values of
various quantity, in eq” (7), we can calculate the modulus of rigidity of the material
- of the wire.

Sigl T, qar T, Sadaa v < sraverreil 3§ Fana o snadora & RRY gradl aur wa
Wm”ﬂﬁﬁfﬂfw | fafe= <Rrar 1 T |Wo (7) ¥ ufawenfa o= o) 89 OR
B gl BT ggar OHE B T R EHT ¥ | aRET Saw D alen ge ar o &

If has two advantage over torticnal pendulum (statestical method)
{i). In maxwell's needle, the load suspended at the end of the wire remains the
same, since only the positions of solid and hoilow sylinder interehanged. Thus
the couple C per unit twist due to tortional reaction remains constant.
Foader Fifsa #F ar & R grr Maffag R w39 e glar £ iy S g @iaey
9o B XATA Bl Bad J ST B 1 o g -C ufy goid gErg wven fraw wear 2
(if). Here the calculation of (I, - 1) reduces to {he determination of the difference
between the masses of the solid and hollow cylinders and the length of the
hollow tube can be measured accurately and easily.
et gz (1, - 1,) ﬁm%wmmmmﬁwmﬁﬁmaﬁam#wamw
m’rmmré@ﬂ“mﬁ 1 R w9 e gg o sl @ S o aed §
Ques(17). Which coefficient of elasticity is important when a cylmdrical
were is twisted? Derive an expression for the couple to produce unit anguiar
twist in a cylindrical wire of radius r and length ¢. {2004)

Sol° For twisting of a cylindrical wire the most important coefficient of elasticity

is modulus of rigidity.
WW@W%W%#W&%W?WWEEW-WQI
For remaining part of this question see Q. No. (8).

Ques(18)What is a Torsional Pendulum? write an expression for its time

period.
Sol" : A heavy body like a cylinder or a disc, fastened at its- mid-point to a falriy

long and thin wire suspended from a rigid support constitutes a torsional pendu-
lum. It is so calledbecause if the cylinder cr the disc be turned in its our plane in
twist the were a little and then reieased it executes trational vibration or
osciliateions about the wire as axis.
9+ a7 3w Wikl 918 fivs o9 vo wafwy o= qor gae o) @ 399 oy fQvg 9 afyr
B G IMUR T TSHRT ST & T Taeell BT ST Jogerd Hed & i g o= a1
%&aﬁﬂﬂzﬁtﬂwwm%aﬁmﬁﬁaﬂwﬁwﬁ%a@@sﬁww
SIRETA H9 g1 qlad, IR & 9Rka: & ovar &

Thus, if the disc be turned thruogh an angle 9, say the suspension wire
two gets twisted through the same angle o _and the give rise to a restoring

'T]w“-‘:
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tortionalcoubple(o in its tending fo pring it bock into its original condition. Here
C is the tortional coupleper unittwist of the wire, equzal to :n;nR" /21.. Where
7 is .the moduius of rigidityof the material.

s Afy e o1 offer Wit v g Shar € Ry 5w § Y 2Ner wor wr Yo
WO BIAT § O §9O BN §9 UN G erRassr e sefter ot oy € Wl g
HIATRT Javell H &9 HT 99 oy €1 96l § T o1 SiRaAe gon ufdy uoies Yo #) o
% @& aran) S8 usd g8 BRI e &

if | be the moment of inertia of thedisc aboutan axis passmgthrough

d’e

itscenter, and dt? , itsangular acceleration, thecouple acting on its isalsoequal
dze d*e ;
to L. . We, thereforehave 1. qe2 = —~C0 . Here negative sign indicating

that the restormg couple ortargue is oppositely directed to the angular displace-
ment.

AR oUW R # 36D FE | A ot om B oRa: sio eyt § @ s @l e B

d?0 . .
& R ot wmdw g a8 emar & o L. Etm':-'ﬂe #El wores s ¥e qulw § R
SEFEE g el a omyel, vl et & Rl Ra # ava &)
| d’o C
—— == — | 0= o
So that dt2 (I) b

C ) ,
Where ‘—I" =M is the acceleratiM

It may be noted that no apprommaq Or's.gw a ev%g‘ggmgeen used in
arriving at this refation forT, unlike in the case of asimple or a compound pendulm.
The timeperiod of a torsionalpendului therefore remainsunaffected even if the
amplitude be large provided, of course the elastic limt of the quspenslon wireisnot
exceeded.

mwmﬁawwﬁm%ﬁ»wwﬂaﬂwgﬁ F&vﬁuﬁwm%faﬂmf%mi‘i
Frdea ¥

TH B Eeh O Hofg G g i wear € Rrawr aEd S5 ann-
Tg M AW Qg ¥ B Bl O w3 oRewest @ @l T @y miw s ¥ wdl B mar 84 o
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ARTRT Yogad 1 onad B, His arar W A ol & 3, aR Rieiad ar s @i Q) 58
Ques(18)Describe the method of bending of beams to determine the Young’s

Modulus of the material of the beam. (2006)
Sol" : The experimental setup forthe determination of Young modulus are

shown in the following figure.

Battery
ol

S @G

A
K,

K

. Figure shows the given beam supported symnietrically on two harizontal
knifeedges K, and K,. A hanger with a hook is placed in the middle of thebeam.
The load is applid by suspending weights from the heok. The depression
produced in the beam is meassured by a spherometer. it is placed in series with
a batteryand a galvanometer G. When thecentral leg of the
spherometer ismade just totouch the hanger the electrical circuit is completed
and the galvanometer shows adeflection.In this position, the reading of the spher-
ometer istaken. Now the beam is loaded in equal step sand each time the screw
is made to touch the hangerand the reading is taken. The same observations
are taken with load decreasing. A graph is plotted between the mean depres-

sion & and the corresponding load W. it is a straight line.

frelt gered @t T R POTE o9 w0 S R wees R 3 Rarar man §1 Rerer R @
4 A @ Gt g Bl K @ K, 97 sraftaa R wiar 31 g9 S o oF ) AW S ver F @
Rear <ra 8 9 g6 9T A1 SieHal-a @ T N deraar @ @ F S gad 9y oen 2139
Al T et G 3wy it F wramar 319 &
W o BT &1 B FR B T T ax 2 Ryg
R gof & orar 8 Red B ey o of °
Wﬁ@ﬁ%:wmﬁ@ﬁrﬁaﬂmﬁ%&%lr
A9 9 FA Br=-Fr= 9/ # e R )W d@Hm § aur
S A TR B SR A WD A AT qedis A g1ga W
TR FH T B T EFE AWI R w0 3
grar o € S B ouw @l X #8139 Er a @y

e et em e me

(W
S ) Sy
‘ w a—
The slope of this line gives (“g*)
Thus
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3
ALY
4bd* 3

The distance ¢ between the knife edges K, and K, is meassured
directlybymeter scale. The width b and the thickness d of the beam are mea-
sured by vernier callipers and screw gauge respectively d is a smaller quantity
and occours in the third power is the formula so it is measured very accurately
at several places. The mean vaive of d is taken.

Substituting the valves of W/ &', ¢, banddin .above equation, we can
calculate the valve of Y.

Kaark, d f gl ¢ @ @Y Mex @ @ o ¥ Do b e e d H apfx defved

T SRS A S E 1 IR d aga O iy T e gue SR 9ia & S9ET € o 39 %R
WA 9 Sl | 9 @R a'r d @ A A/ FMeaen Wi .

Faget Tl B W/, ¢, bda d1 o9 @@ Y & 99 e s | 2

.20 Define the term stress, Poisson’s ratio and elastic limit. - (2007)
Ans. (i) Stress : External deforming force exerted on a body develops inter-
nal forces opposing the external forces. The magnitude of the internal forces
per unit area of the section is called stress. in equilibrium, the iternal forces are
equal and opposite to the external forces. Therefore, stress is measured by the
external forces per unit area of the section. Its dimension are ML-'T-2 and units

Force

are newton/meter? or dyne/cm?. Thus Siress = Trea

(i) ufdaer:— asg Q@ ad, 519 @ Ave R T e 8, 9reads a1
iR a3 & fay anaRe ga sa=t dar 8 ) it (@ve) & ufd saE a3%a =™
A 9T IR ® g1 @ uRonmw o ufdaa Had & | O<aT @) [ERAT H, JRD
¥ I 3R [{Agda aega: ga © aER g1 § | o ufded ot |iaa el gif
(@vs) & Ui 313 &0 B ared 9o | fBar Simar € | g9 A1 MLT2 QR 9
e /Mo? AT ST/ |AR B &1 A

uflad = a1 /8o

(ii} Pcisson Ratio : The ratio of charge in dimension to the initial di-
_mension, perpendicular to the direction of forces is called lateral strain. Within
elastic limit, the lateral strain is proportional to longitudinal strain i.e. the ratio of

lateral strain and longitudinal strain is constant for the material of a body. This
constant is known as Poisson’s ratio.

If § and « are the lateral and longitudianl strain respectively, then
Poisson’s ratio o =B [a

(i) IS @1 IUr:— O § gedE w1 uRfPe a7 @ ST S a6
P e & waga gar 8, ured el st 21 gorerr §Er @ oy ared
At sl faefy & aargurl) siar @ | srfa ured den srgasd s @1 arquia
Uve & ugEll @ fov Mg 8ar 81 sw-adie @ 9iaes &1 [Aadis 8d § |

afy B 3N o wHer ured v ergRsd RAgfy &Y O 9w &1 e U™
o=Bla.C

(iii} Elastic Limit : In solid, when stress gradually increases, strain
also increases (Hookes faw) until a pointiis reached at which the linear relation-
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ship between these two just ceases. This value of stress for which. Hooke’'s

law just ceases is called the elastic limit of the body. The body thus recovers its
original state after the removal of the stress within this limit but fails to do so

when this limit is exceeded.

- (fii) ggTYerar T — aﬁwﬁ,mmaﬁmﬂmﬁ%aﬂﬁ?@%
W ggar 21 (gaaﬂﬁm)mamwﬁﬁwwgaﬁwgqa%ﬁw%ﬁaw&m
Twwﬁm;ma%wmzﬁmwgmzmﬁw, I HHTE
ﬁmﬁwmwm@mmm%wm,wﬁm%muﬁaaﬁmﬁ
wﬁmmﬁﬂmﬁeﬁaaﬁmwﬁm%ﬁﬁﬁmaﬁmaﬁmémﬁn

Q.21 Show that the potential energy per uit volume of a strained

wire is Elsrress X Strain ' (2007,2013)
Soin : Suppose a wire of lengh / and area of cross-section A is stretched
throught a distace x by applying a force F along its length. Then
meﬁmﬁmfamqﬁ%@aumAa}ma%aﬂﬁmw
F ST X 37 @ &= orar &
Stress = F/A and Strain = x| £
Therefore, Young’s modulus of its material is

stress ~ F A

—
_—

Strain L 4
Hence, the force F required to stretch it through x is

F-—:-(-\—,f'—)x
e )

If the wire is now stretchedfurther by a small distance dx, then
the work done will be ' . : :

dw = F.dx = (—Yf-)xdx

Therefore total work done to stretch the wire from its original
length ¢to (¢ + x) will be- '

1 )
?vulume X stess X strain

2
l
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Thus strain energy per unit volume will be

= -%—Strsé % Strain

Ques 22 :A Cantilever of 50 cm. length is depressed at its loaded eng by
4mm. Calcualte the depression at a distance of 30 cm. from the fixed gpq.

(2009)
Soln. The depression of the cantilever at a distance x from its fixed end is given bs)f
w(x*t X)) Wx? (l-——{)
Y=371l 2 G 37 Py Bt (1)
and the depression at free end (x = /) is
wi?
=—— e 2
3Y7 )

Where [ is the length of the cantilever, W is the load and Y is the Young's Modulus
of the material I is the geometrical moment of inertia. From equation (1) and (2)

we may write
2 . -
x x ;
S| - = . - 2t X |
) ( ‘3) 3x (J 3)

i or O YR
3 I |

Given!=0.5m, ¢ =03 mand §=4x10">m>

O [

therefore
3%(0.3)% x (05-— «93—3) ,
y= 3 x4x107>
2 x (0.5)
e 027x04 ><4)(10_3
0.25
- 27 x 1.6- ><\10'—3

» = 1728 x 10~3 meter
y=1728 m.m. Ans.

Q23. What is Elastic limit? (2010

Sol™. In the case of a solid, if the stress be gradually increased, the strajy to0
increases with it in accordance with Hook's law untili a point is reached atyhjch
the linear relationship between the two just ceases and beyond which the g¢rain
increases much more rapidly than is warranted by the law. This value of the
stress for which Hook's law just ceases to be obeyed is called the elastic linjt of
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the material of the body far the type of stress in question.

The body thus recovers its original state on removal of the stress within
this limit but fails to do so when this limit is exceeded acquiring a permanent
residual strain or a permanent set, as it is usually referred to.

TRl «ff St o AfX ¥9 givae & @R 9e) @ O T @ Frawmgar fasfa
4t 99 T Sl © 9 a6 % Sr" o dten weeg @t T 8N 5 Ot @ ued)
gfse & wg W famfa ISt 9 Sgdt @1 uRee w1 o 9w W9 o FEE uee 6
W B 3H Ui W g Wi weard @1 YR S @ ol fuvs wiiswa @
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The elastic limit is also sometimes defined in term of the lcad or
the force which produces the maximum reversible or recoverable

deformation in the body.
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Q24. Differentiate between longitudinal and lateral strains. (GKP-20616)

Sol®: Lengitudinal Strain ( « ) :- The ratio of change in dimension to the initia}

dimension, parallel to the direction of force is called longitudinal strain. If ' is

the original length'and '§7* is the increase in length then longitudinal strain.
for = agene w1 RN fam @ Tae S ww w1 K A g @ ey famf

Fearm T AR 1 ARMTE EE Ao sy ¥ g € @ s fgfa-

PR
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Lateral Strain( #): The ratio of change in dimension to the initial dimension,

perpendicular to the direction of force is called lateral strain of 'd" is the original
diameter and '&d"' is the change in diameter then lateral strain- .
fom & agena &1 WRfts oo @ oraa i 9@ w1 fKen @ ovwea 8 gar € ared
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