Chapter Ten

SOME SPECIAL CURVES
ON A SURFACE

() Important Points from the Chapter

. Lines of Curvature A curve on a surface is called a line of curvature
if the tangent at any point of it is along the principal direction at that
point.

. Equation of Line of Curvature Since, the direction of line of
curvature at any point is along the direction at that point, therefore the
differential equation of the two system of line of curvature, is the same
as the equation of the principal direction, so their equation is

gw dﬁﬁ du’ du =~
; Con_}ugate Dlrectmns Let P and @ be two neighbouring points of
curve on a surface and PR be a line parallel to the line of intersection L
of tangent planes at P and @, then the limiting position of the

directions PQ and PRas Qtends to P are called conjugate direction at P.
(2008, 06, 04, 1999)

. Equation of Conjugate Dlrectwn The equation of conjugate
direction is given by dsdu® Sub

. Asymptotic Lines The dJrectlons which are self conjugate, are called.
asymptotic direction and the curves whose tangents are along
asymptotic directions, are called asymptotic lines.

The differential equation of asymptoticline is d,g du® duf =0. (2007
. Null Lines (Minimal Lines) A curve on a surface of zero length is
called null lines or minimal lines.

The differential equation of the null lines is g, 5 du® duf =0
which is obtained by equating to zero the square of the line element.

. Isometric Lines When the metric of a surface assumes the form
ds® =\ [(du' Y + (dud)]
The parameters u® are known as the isometric parameter, A being a

funétion of u® or a constant. Such parametric curves are called
isometric lines.

. Fundamental Equation of Surface Theory
() N fu =—dyg g" xf? is known as Weingarten equation.
(i) dupy — Boy,p =0 is known as Mainardi-Codazzi equation.
(iil) Roopy = Goy Gpe —dog Ay 18 known as Gauss characteristic equation.
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<iL>Very Short Answer Questions

@ 1. Find the necessary and sufficient condition that the
parametric curves at a point of a surface have conjugate
direction. (2010, 06)

Or Prove that the necessary and sufficient condition that the
parametric curves at a point of a surface be conjugate is that

d]_z = 0.
Sol. We have the combined equation of the parametric curves is
| du' du®=0 ...(1)
Now, if the parametric curves are along the conjugate direction, then
~ d*% Bl =0 ... (id)
We know that, Py du® duP =0 (i)

From Egs. (i) and (ii), we get H; =0,P,+ B, #0 and Py =0
The parametric curves is conjugate iff g P FP.p=0

& dl By +d? Byt Pyy)+ d®2 By, =0 [ d% =P o
= A% (By+ Pyy) =0 [ Py + Py 0]
o d#=0 [ By + Py #0]
o _ G _ f,._dlzz;ﬁg'l
o o0
= Ay =0 Hence proved.

@ 2. Define null lines on a surface and show that at a given point
of a surface, there are two imaginary null lines. (2007)
Sol. Part I Null Lines A curve on a surface of zero length is called null
lines or minimal lines. The differential equation of the null lines is
8up Au” du® =0which is obtained by equating to zero the square of the line
element.
Part IT We know that the equation of null lines are
8op du® duP =0

= gy du)+2 8o dz;l du® + 829 (du®?=0 [ &2 =g021]
2 fed dir’ +2 g du’ + oo =0
3 e 1253+ &2

Now, we have two null lines given by
du' __ 28t \!4(3'12_)2 —481)8

[~ =g 8o~ (g12)° 20]

duf ~ 2 g1 ?
+ s i
= @3 =-E12TN"& = Null lines are imaginary.
du 812

Hence, at a given poil;t of a surface, there are two imaginary null lines.
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(ig Short Answer Questions

@ 1. Prove that the necessary and sufficient condition that the
lines of curvature is along parametric curves, is that

dy;» =0, g, =0 and dy # -C—IB. (2004, 01)
11 822
Sol. The differential equation of line of curvature is
e™ go, dp, du' duf =0
= (81 dip~ 812 d1y) u')? + (g dyy— Zoodyy) du'du®
+ (813 dap — 8oodyp) (du®)* =0 Y
The combined equation of the parametric curves is
dutdu®=0 ... (i)
On comparing Egs. (i) and (ii), we get
811 12— G12dy; =0 -..(i1)
812 Agp — 8oz dip = oeo(19)
and L1z dyp — 839 Gh; =1#0 w(¥)

On addmg Eqs. (1) and (iv), we get
811 dipdyg — 8ap 1Ay =0 =3 dyp(g11dgy — Eootdy;) =0

Hence, dig= g12 =0
d
From Eq. (v), g11dgs # good)) = 22
g11 322
Hence, dys = g,9=0and L
_ 11 822
Conversely Suppose the following condition holds
Le. E1a = '1’312:0’5&“1']*;’5@ﬂ
S11 8z

Using this in Eq. i), we get du! du?=0
which is the differential equation of parametric curves.

Q@ 2. Define conjugate directions and prove that if the directions
given by Pz du® du® =0 are conjugate, then d*® P =0.
(2008, 06, 1999)

Sol. Part I Conjugate Directions Let P and @ be two neighbouring
points of curve on a surface and PR be a line parallel to the line of
intersection L of tangent planes at P and @, then the limiting position of the
directions PQ and PR as @ tends to P are called conjugate direction at P.
Part II Here, the given directions are P, 5 du® duP =0.

= P, (du')? + By + Pyy) dut du®+ Ppy(du®?=0
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2
du! du?
= Pil(duz) +(ﬂz+P21)El;§+P22—0
1 1
Let the two directions be 5@5—2 and §E—2—.
du du
1 1
Then, du2 + auz __ B+ By) ...Q)
du® Jdu B
du' ou P s

d 5 = 22 enh 1l

an du2 6_1&2 Pll ( )
i O du' . o ” . :
The two directions o and ™ (i-e. du” and 8u%) are conjugate iff
u u
dop du® 8uP =0
= dyy du' 8u' + dyy (du' 8u® + du® Sul)+ dopdu Su? =0 [> dig =d]
du® 3! du' &)
= e 5t |y =1
et du® 5u? dqz[duz Buz) A
d11.559 [ B+ le)-
= —=S -2 2 g =0
B, %l p | ™
Py,
= dll?)__dlz(l;)12+P21)+d2ZI)11=O
11
I-‘_. 2% g2__ dy gl =§2_21-

| ] d d d |

= d"'By + dP By + Py) + d2P, =0

d°® F.s =0 Hence proved.

@ 3. State and prove Mainardi-Codazzi equation for three
dimensional space. (2009, 06, 2060}
Sol. Statement ()} dog, ~ dyy 5 =0
(1) RGyg, = doy dp; — dog Ay Wwhere RGyp, = g0 € Ripy
is Riemann Christoffel curvature tensor of first kind.

_Proof We know that three vectors X, Xy and N form a basis for three
dimensional vector space. Therefore, any vector can be expressed as

linear combination of these three vectors. The components of vectors

Xo f=1,2) are ¥, and the components of N are N°.

By Gauss equation, xfaﬂ =dy N g w.(D)

By Weingarten equation, N fa =—dyy- g™ va ... (11)

Taking covariant derivative of Eq. (@) w.r.t. ©*, we get

Capy == dop,y N' + dy g N?,

= Xopy=dopy N' —dyg d s g% & [from Eq. (ii)] ...(iii)
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Interchanging B < vin Eq. (iii), we get

g = AoypN* = oy dpsg™ &, ..(dv)
Now, subtracting Eq. (i11) from Eq (iv), we get _
Loy = Lo = opy — Do) N' + (o dps — dopy i) 8% 2,

= e Rogy = (dogy — doyp) N+ (dy dgs — dogdigs) 872, 9
= NISC‘E Rgﬁ‘{ (daﬂ'l' U-YB) NL .Z\VTl e (dot.f) dﬁﬁ e d{xﬁd'fﬁﬁ)g pr

| [~ N'N' =1, N‘x’ =, N‘xf&.:(}]
= Oz(dﬂﬁ'y_dm‘ﬁ)+0
= dog,y ~ oy, 3 =0
which is the required Mainardi-Codazzi equation.

Q@ 4. State and prove Gauss characteristic equation for three
dimensional space, (2001, 1999)
Sol. Proceed as above Q. 3.
Now, multiplying Eq. (v) of Q. 3 by x‘s, we get
xl xz Re (dc'tﬂ Y m' B)
2, Nt (d dys ~dop dig) (8% 5, {,){ 2y, =g, and £, N* =0]

= 8oe Bogy =0+ (dopp dps ~ dop dis) 8% &po
= Ryopy= oy dgs — dog dys) 83
= Roopy = Aoy dpo = dog oo
which 1s the required Gauss characteristic equation.

@ 5. Define asymptotic lines and prove that the necessary and
sufficient condition that the asymptotic lines are parametric
curves, isthatd;; =dy, =0 and d;, #0. (2007)

Sol. Part I Asymptotic Lines The directions which are self conjugate,
are called asymptotic direction and the curves whose tangents are along
asymptotic directions, are called asymptotic lines.

The differential equation of asymptotic line is dyp du” duf =0
Part 11 The differential equation of the parametric curves is

du' du®=0 : ...(d)
and the differential equation of asymptotic line is
d, g du®duP =0
ie. dn(dul) +2dl dutdu® + dyy(du®)2=0 [r dig = do;] ...(0)

If asymptotic lines are parametric curves, then by comparison, we have
dyy =d;s=0and d, =0
Conversely Suppose that d;; = dyy =0and d;, #0
Using this in Eq. (ii}, we find that
du! du?=0
which is differential equation of parametric curves i.e. asymptotic lines
are parametric curves.
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@ 6. Define conjugate directions and find the equations of
conjugate directions. - (2004)

Or Find analytical expression for two directions to be conjugate.

Sol. Part I Conjugate Directions Let P and @ be two neighbouring
points of curve on a surface and PR be a line parallel to the line of
‘intersection L of tangent planes at Pand @, then the limiting position of the
directions P@ and PR as @ tends to P are called conjugate direction at P.

Part II Let &, & + dx be the coordinates of two neighbouring points P
and @ of a curve on a surface and N *, N' + dN* be the components of
normals at P and @), respectively.

N-an

From the above figure, it is clear that 8¢ || PR.
Since, 82 lies in tangent plane of the surface at P, then we have

Nt 8¢ =0 ...(0)
and (N + dN?) 8¢ =0 . ... (i)
From Egs. (i) and (i), we have
AN, 80 =0 = OV gy 9% 5uP =0
du® ouP
r-.- Sk =108 SuP, dN* = i du“]
[ oub ou® _l
= N}, % du® 8uP =0 ... (i)
We know that, \ _
dog =— N, 2 ...(iv)

From Egs. (i) and (iv), we get

- — dyp du”® duf =0

s & dyp du* SuP =0 .
which is the required equation of conjugate directions.
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| _ .
b Long Answer Questions

@ 1. Find the asymptotlc lines of the paraboloid of
revolution z = x2 + y?, (2010)

Sol. Consider x, y as parameters, then the parametric equation of given
. surface is

I=X,y=y,z=%+ 3> [here, x' =x, 2% = y, 2* = 2]
ox dy az]
X, =|— 1,0,2
s (Bx ) 2
Jdx dy dz
d X,=[=, 2, Zl=0,1,2
o ? [ay dy By) ( 7
. a%¢ | '
NOW, = (alal X, al aly, alal 2) = (0, 0, 2),
ax dx
0%
—_— = (8182 X, 3132 Y, alazz) = (0, 0, 0)
ox dy
%
and % % = (3399%, 920,y, 95942) = (0,0, 2)

gl] “‘X]_'Xl —1+4x2,
g12 =X1 'X2 =4xyand g22 =X2.X1 =1+ 4y2
=182 (82" = A+ 4D 1+ 4y — @ xy)’= 1 + 42 + 4y*

JE=yl+42 + 4% = |z + x

i_dxx | —2x%,-2y1
5 %0l | 1+ 4 1 4y

[ —2x ~2y 1 )
VI+4 4457 14 40? + 492 1+ 402 + 432
Now, dog =N aaaﬁx'
di = N'9,000 + N%,9,5+ N° 3,0,2=214/1 + 422 + 457
dip=dy; =N'9,9x+ N%,0,y+ N%3,0,2=0

and doy = N'900+ N8,y + N39,0,2= z
J1+ 427 + 457
The differential equation of asymptotic line is dup du®du® =0.
dy; (du')* + 2dyodu du® + dyy(du?)? =0 [here, u* =z, = ¥]
2 5 2 R
- J11+ 452 + 492 2 +0+J1+4x2+4y2 =
= (dx)2+(dy)2=0-—-}dx=iidy=> x=tiy+ A

Hence, x =1 iy + A are asymptotic lines.
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Q 2. State and prove Beltrami and Enneper’s theorem.
' (2011, 2000)

Sol. Statement At a point on a surface where the Gaussian curvature is
negative and equal to K, the torsion of the asymptotic line is +- J—*K .
Proof The torsion 1 of an asymptotic line is given by

o g%u' 1P : . (i)
We suppose that the asymptotic lines are taken as parametyic curve.,
Then, dis=0,dy5=0
We know that, ep=~ey,6, =0=e¢,
= doy = dyy
Now, from Eq. (i),

T = Aol dyy el

2
= T=d;ph, 8'22 [du ] —hodys gt ( J ... (i)
We know that, I =¢g5 & = b= /2 [+ £yp=1]
‘and g% = & P _ &2
g’ g

On putting this value in Eq. (ii), we get

[ 1\? 2
1= dm&zlg” [%) -g" [%Z—J J
[

g \ ds g\ ds
do! (@Y du?)’]
= T= e [811 g | T8 (*E) J -+ ()
du®
For a parametric curve, u® = ¢ and ~—— 7 =()
s

du

=7

Therefore, the torsion 1, along the parametric curve u? = ¢%is
“cl = T(i]-g.

Vg
Similarly, the torsion 1o along the parametric curve u! = ¢ is
o
Ve

T2=_

L}
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2 2
Hence, =15 = (-‘512) p S . (iv)
| G g
We know that, the Gaussian curvature K is
_ 2 2
K=-§= d].1d22g (dlz) :>K=ﬁ"!1§ [... d,ntﬁ,dm___.o] ...(V)

From Egs. (iv) and (v), we get

t=ti=-K=1=%t./-K,1,=% /- K

=h T, =Te=%,/-K

@ 3. State and prove Rodrigue’s formula. (1998)

Or Prove that the necessary and sufficient condition that a
curve on a surface be line of curvature is that
dN’ + K, dx" =0 at each of its point. (1992)

at do you mean by line of curvature? Prove that a
curve on a surface be line of curvature iff at each point
of it dN' + K, dx"' =0, where K, denotes the normal
curvature. (2014)

Sol. Statement A necessary and: sufficient condition that a curve on a
surface be line of curvature is that

dN* + K dx =0 ...{)
at each of its points, where K, denotes the normal curvature.
Proof Let a curve on a surface be line of curvature.
Then, we have (d.g — K ,8up) duP =0
But, we know that, d,3 =~ ', dN'g and g4 =— ', dx'g therefore
Then, (£, dN's+ K2, 2p)duP =0
= X (AN’ + K, 25)=0
Since, N'.-Nt=1
On differentiating, we get 2N'dN’ =0
i.e. dN' is perpendicular to N°.
i.e. dN® is tangential to the surface.
Also, d# is tangent to the surface.

Therefpre, dN* + Kd# are components to tangent vector to the surface.
Also, xja are the components of tangent vector x,,. Therefore, from Eq. (),
we have

dN'+ K, d¥ =0

Conversely Let us suppose that dN* + K ndf =0, along any curve on
the surface, where K, 1s any function, then
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| 2y @N'+ K,dd) =0 =2, (N + K,2g)duf =0
= (- dog + K o84p) duP = 0= (dp ~ K, g,) duf =0

Hence, the curve is a line of surface in case K, is normal curvature to the
surface, '

Also, (K,dt + dN)=0=3 K, dx =— dN*

= Knm.fﬂ duﬂz-Nfﬁ duP

Taking inner product with X du” on both sides, we get
K %, Xp du® duyb = - Ny o, du® duP

= Knguﬁ duaduﬁ = daﬁdua duB
" P dyp du® dubP
n o I A ﬁ

Hence, K, is a normal curvature at the point »* in the direction du®.

%}/State and prove Euler’s theorem. (2018, 11, 03, 01, 1999)
Sol. Statement If ¥ is the angle between a direction at a point P and the
principal direction at P corresponding to principal curvature %k, then the
normal curvature K, in the direction is given by

' K, =K, cos® y + K,sin? y

Proof Let the line of curvature be taken as parametric curves, then

dy5 =0, g1 =0 and normal curvature is

du® dyb
K =d e s
nTTE 0y ds
5 2
du! du’
= K, =d, (—dé_J + dyy (E_] @)

equation

K,~K,g%dg+Z-0
g
= K2-K (—d—l-l-+—d—23]+——._d11d22=0
' 811 &) B8
[+ di2=0, g3=0]
= Ki_Kn(_él_l_+_du_2_2_}+£d.l£22=O [._.dlzzo’gm:(}]
E 811 8/ L1182
= (Kn—‘—éllJ(Kn—igz—z-)=0
’ &1 822 _
= K, =“'i‘1‘1“aK2=£2*g\\h d ...(iD)

&1 832
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Let C be a curve on the surface in the given direction along which
components of unit tangent vector is ¥°. .-

We know that, alxj are the components of tangent vector x; along the
parametric curve du” =0.

Since, y is the angle between given direction and parametric curve
du® =0 whose magnitude of vector x; is +/ g;,-

0,% g =,/ COS Y
ds
= xflea%=vgll cos Y
dua | ;@
= 81a E =4/ 811 COS Y , [ 'f.lxta = 8iql
- dut e

= 811 _&.‘9‘ = wfgn COS'W : [ &.=0]
du' ‘
CO8 W =./g8y4 7&; ...(111)

Similarly, if ¥ 1s the angle between the given direction and the
parametric curve du’ =0, then

— du®

Since, the parametric curves are orthogonal, then we have

-
y 2 b4
: du? .
S Y = 4/ 8o F7i -..(1v)

Using Rags. (i), (iii) and (iv) in Bq. @), we get
K, =K, cos®y + K,sin® y



