Chapter Eleven

GEODESICS

& Important Points from the Chapter

. Geodesics on a Surface A curve on a surface is called a geodesic on
the surface, if its osculating plane at every point contains the normal to
the surface point.

Or

Let P and @be any two points on any surface S.These points are jointed
by a number of curves Iying on S, then the curve which possesses a
stationary length for small variations is called a geodesic. These
geodesics are curves of stationary length.

. Differential Equation of Geodesics on a Surface

2 o o B ¥
- +{ }d;s '%zo = p+ TRy P =0

ds® By
which is the differential equation of geodesic on a surface. (2004, 01)
du® duP 1 )
. Torsion of a Geodesict=¢ . o (e N W k., —F )gin 20
wb Vbl ds ds 2(2k1) ’

. Geodesics Tangent If P is a point of the curve C, then geodesic
tangent of curve C at point Pis called as the geodesic which touches the
curve at P. Thus, geodesic tangent at any point on a curve is the

-

geodesic which touches the curve at the point.

. Geodesic Curvature For any curve on a surface, the components of
curvature vector at a point Pis #” = kp/, where kis the curvature and p’
is the-components of the principal normal of the curve at P,1ts resolved
parts along the normal to the surface and tangential to the surface P
are called the normal curvature vector and geodesic curvature vector

-of the curve at P. Their magnitudes are called the normal curvature
and the geodesics curvature of the curve at P.

. Geodesic Coordinates If the parametric curve are orthogonal and
one of the families of parametric curves are geodesics on a surface, the
coordinates on a surface can be introduced in infinite number of ways
as one family of parametric curves can be chosen arbitrarily.

. Geodesic Triangle A curvilinear triangle on a surface whose three
sides are geodesics, are called geodesic triangle.

. Some Important Theorems

(1) These passes a unique geodesic through any two points of the
surface.
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@) If a surface deforms into another surface without tearing or
stretching, a geodesic of the surface transforms into & geodesic of

the deformed surface.

(i1} The necessary and sufficient condition that the parametric curves

; . o
u” = ¢onstant is geodesic, is that {ﬁ ﬁ} =0 for o 3.

(iv) At an umbilic point, the torsion of the geodesic is zero.

(v) The necessary and sufficient condition that geodesic is a line of

curvature, is that it is a plane curve.

(vi) The torsion of an asymptotic line and geodesic tangent are equal.
(vii) The torsion of the two perpendicular geodesics at a point of a

surface are equal in magnitude but opposite in sign.

(viii) According to Bonnett’s theorem, the relation between the torsion of

a given curve with the torsion of its geodesic tangent is 1 g =T

;. db
Fa

(ix) The geodesic curvature vector of any curve is orthogonafto the
eurve, is given by K, = e.f:g— euﬁualﬁ, where e=%1, according: as

geodesic curvature vector and the curve make angle + %

Bie e ol
&) k=% + x,

(x1) The metricin a geodesic coordinate system on a surface is given by

ds® = (du')? + gpo(du?

chVery Short Answer Questions

*{’1

.

@ 1. Prove that the necessary and sufficient condition that geodesic
be a line of curvature is that it is a plane curve. (2011, 2000)

Sol. Let the geodesics be a line of curvature. Then, at all points of

geodesic, we have .
£ gy, dys du” dub =0

du’ du®
g oy Ops A4S ds =0 [ e*P By = gk o
Changing the dummy indices o, ¥, B, 8 by 8, a, T, B, we get
- p
o du® du”
€5 O —=0,lLe.T=0
o ds ds

Hence, T =0 at all points is a plane curve.

Conversely Let t=0at all points of the geodesic.

Then, at all points, €as Oy g"'au’“ u’B =0 which ean be writter z=
gk 8oy Ops du’ du® =0

Hence, geodesic is a line of curvature.
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@ 2. Prove that at an umbilic point, the torsion of the geodesic is
Zero. :

Sol. We know that at an umbilic point, dop = pop

v 2

pP=x €ob 5;53 |
=X ey Eﬁ wopf=a Cap ' wh=0 Hence proved.

L

Therefore, T = e,z dy, 87° 1

(_i) Short Answer Questions

Q@ 1. Prove that two geodesics at right angles have their torsion
equal in magnitude but opposite in sign. (2009)
Sol. Let 1, and 1, be torsions of two perpendicular geodesics through a

point P of a surface and 8 be the angle which makes the first geodesic with
the principal direction for which principal curvature k.

Then, the second geodesic will make angle (g + 9] with it.

We know that torsion of a geodesic in terms of principal curvatures k4
and &, is
T=(ky— & )sin O cos B

Therefore, - 1, =(ky— & )sin® cosH (1)
and To = (ky — k) sin (g + ﬂ) cos (—;E + B)
ie. Tg =~ (ky—k;) cos O sin 6
- _T2=(k2—k1)5in60059=> _12=Tl
Ty = —Tq Hence proved.
Q. 2/ﬁmw that the straight line in three dimensional Euclidean
space is the example of geodesics. (2014)

Sol. Consider the Euclidean space s, of n-dimensions. In this case, the |
metric tensor g;; is denoted by a;;

. [1, ifi=7]
and g"fza‘faff:{o, if i
Thus, 1",-;-‘ =0 = [k, ij] relatives to s,. -..(2)

Then, differential equation of a geodesic in s, is
20 gl gk
Y & dy

: =0 (i
ds* 7 ds ds )
g d2 -
Then, Egs. (1) and (1) becomes TE =0 - LG(1n)
s .

2.4 .
On integrating, we get = a’ ... (1i1)

s
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Again integrating, we get ¥ = a’s + ¥ ...Gv)
which is of the form y =mx + ¢ which alsc represents streught Iine and
Eq. (iv) is the solution of Eq. (ii).

Therefore, the geodesics relation to s, are given by Eq. (i) which proves
that the geodesics in s, are straight line,

Q@ 3. Prove that the necessary and sufficient condition that the
parametric curve u® = (constant) be geodesic, is that

o
Ty = { B B} =0 for o = f. (2018, 16, 14, 12, 07)
Sol. Here, we will prove that, if u; = ¢, (constant) is geodesic, thenTJ, =0.
du’ d%ut
For W=, = =0 = =0
ds ds’
du® dub du’ )
The equation of geodesic is £ +Ig, — —=0
q n ot g 1C a2 By T @)
dub du?
Red fora =1,2, [ 1,2
educes fo B e s ErB.y ]
du' dut dut du® du® du'
== By — s ol i B
Yds ds % ds ds 2 ds dS
du? du? I dut d%} |
+Tgp—— —— =0 ——=0, =0
2 ds ds |_ ds ds® i
5 7
du® du? [ au? du®
= . r%z—c-g-g 0 = I3=0 l E;ecn_e. 0
= I‘é"ﬁ =0forc =

Conversely Suppose that 'y =0 = I'y; =0. Then, for u’ = ¢, we see that
Eq. () for o =1 is satisfied.
Now, we have to prove that Eq. (i) is satisfied for o =2.

du’
Foru'=c, =——=0
" ds
du® duP
ds’= g, du® duP = L -E—l
2 2
= d_ZJ]_ +2 d_u:l.du2 d_u|2 —0 4:,'1—g ]
&1 ds 27 g 22| oo Ex= L9
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On differentiating Eq. (i1) covariantly with respect to p,ﬁ and making use
of 99, =0, we have

g E!Ep: d_"'2=0_—_> I du? duﬂ]d”2=g
21 ds | ds g”[ ds dsts

du?
20,25 %0
822 6
2 B
We have, (ﬂi) Ei—-lf—- =)
ds } ds
[ 2 ‘A
= . d | du +du1.,T2ﬂ.du -0
quf ds ds
v du2 5 duP du?

+T =0
ds® P ds ds Fe
Thus, z' = ¢ is a geodesic.
Smlarly, we can show that u®=c?is a geodeszc iff T4 =0,

Hence, u* =% = constant is geodesic.

Q@ 4. Prove that a curve for which ~ is constant is geodesic on a
¢ T

cylinder. (2018)
Sol, Suppose, the generators of the cylinder are parallel to the constant
untt vector a. Let the curve C be a helix on the cylinder. At any point Pon C
let ¢, n be the unit vectors along the tangent and principal normal to C and
N be the unit vector along normal to the surface; of the cylinder at P. Since,
the curve C is a helix, therefore o :

t-a = Constant £ oo (1)

On dlfferentlatmg both sides of Eq. (i} with respect to arc length S of C,
we get gt

—-a+t-0=0

das
= kn-a=0
- . n-a=0 ..{11)
Also, n-t=0 .. (111}

From Eqs. (11) and (i), we see that the vector n is parallel io the vector
a X t. But both the vectors a and t are tangential to the surface of the
cylinder at P. Therefore, a x t is parallel to N. Thus, n is parallel to N.
Therefore, by normal property of geodesics C is a geodesm on the
cylinder.

Hence, the curve for which -~ is constant is a helix on a cylinder. So, the
T

X, ; ’ ;
curve for — is constant is a geodesic on a cylinder.
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| ' i .
¢ Long Answer Questions

@ 1. Find the equation of the geodesics of the surfaces

x' =u' cosu?, x! = u? sin yu? = f(ul). (2010)

Sol. We have, X, = g::' = (gﬁl’ gfl’ gfl) = (cos u?, sin u?, /1)
x._ % [ a? "
2730 | ou? 0w 9
éll—xl X —-COS +Si1'l u2+(f7)2=1+(f’)2 ?
£o1 g12—X X2=-u cosu2 sil1u2+u1cosu2+sinu2+0=0
E20=X3-Xy = (1")?sin? &' + (@!)% cos? 2= (z')?

i 1
d oMo ,82=g? =0, g%-
et =0

1 ra':‘:'i"n g, 08| . »
et + f— =
2low " out et
1198, . dg1, _9g,]

2 ou? 9t Q! J
Slmllarly, [1, 22] =— ! 12,11} =0and [2,12] = &', [2,22] =0
. Th=g%B,11]=g"[1,11] + g2 p, 111

) (- z* sin u?, ' cos u? O) i

e
4

=0

.. 822 [1,11) g ; r gn:é"g]
g - [ gJ
~ (u1)2 }dfz _ flf2
g 1+ ()
rh=g"01,12]=0
1 _ 11 i1 _ 892 _ (ul)a_ —u!
Tap= g [1,22]_?[1,223_- e T2

Iy = g”2,11]= 0
Ip=g"12,12] = " 311‘1 T3 =g"]2,22]=

Then, the equation of geodesic are
d2 o du® du?
rﬂ?
ds ds ds

2.,1
Fora =1, L%,y (dUJ s ory utdu® rgz[i_\,
- - ds ds )

=0

=

ds ds ds



. dl M (du) N L N
ds 1+ (f')? 1+ () ds
d2ut Y du? ’ d (du?)
= 2 N2 "z =0
ds 1+ (F)\ ds L+ () ds )
3 2 9y 2
and fora =2, = rn[d“] RN Ll du' du® SN i‘li_ =0
s | ds )
2.2 ’ 1 2
g g B B
ds u ds ds
2.2 1 2
= (ul)z‘d’_lf_,{_zul_.d_i_d_u__zo
os ds ds :

d 12, oy [ 21_i{£_2]
= 16D @h = w6 =
On integrating, we get

1,2 du’
(") — = h (constant)
as
= h ds = (u')? du® 3 5.0

The metric on the surface of revolution is given by
ds® = = 8op du” duP
ds? = gll(dul) + 2 g9 duldu + ggo (dut)>
ds* =1+ () (du')? + 0 + ()2 (dul)?
R ds® = B* (1 + (fY2 (duh)? + A2()? (dud)?
' (du2)2 B2+ (FP) (duh)+ h2()? (du?)

L 448

1 _1+(MH)(du 1
= h2 - (u1)4 (du2J + (u1)2
1,2 2 142
— (H’ )h h (d 2)2 1 + ?;2) (du1)2

du’)  R® [ 1+ (]
- ( J_(u)ﬂ((uf 2)
du | h 1_+(_£1_>i A }L(f_)f_
dul 1 (u )2 1 (u )2

On integrating both the sides, we get
7152
wimex kL (l+(f) iy

= =du’=+

—--—.—-—..

ut (@) -

where, ¢ is a constant.
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Q 2. Show that on the right circular cone

x' =ucos v, x% =u sin v, x® =u cot a, the geodesics

are given by u = h sec (v sin o + ), where h, o, p are

constants. (2008)
Sol. We have, Xl- g % = ox ] o’ ; o’ | = (cos v, sin v, cot o)
: , ou du du ou
::af: o 3 a0 =(— usin v, u cos v,0)
2oV \ou w3 v

g:=X;-X; =1+ cot?a = cosec
Bl2=8n =X, -X,=0
Bgg = Uy
=81 8~ (812)2 = u? cosec’o.
1 .2
=3 - =sm«
cosec” 0.

1
12~ 821 =0,a‘:’22=?

Ju ou 17
1, 12] [agu 5 0811 a8’11] =0
2\ Ju du du

u,[2,11]=0 and [2,12] =y, [2,22]=0
IL=g%[1B,111=0+0=0
[=g"°p,121=-0+0=0
I“;2 2%, 22] = —usin®a
Fll“g {6,11]=0
2 =g%%[8,12] x;l; andT3, = g%° [5,22] =0

dzu“ cluB du,Y

+ Iar =0
ds P ds ds ds

The equation of geodesic are —

Since, ! = u,u>=vforo =1,

d%u® (du) L du_dv [dvT
+Td +9T + T} =0
dss  Y\ds 2as ds 2lds

. 2 2
= —q-—z-musmza(dv) =0
ds das



ds ds ds
d*v 2 du dv
== o SR
ds® u ds ds
d%v du dv
2
- 4T pou B g
ds® ds ds
= 2 (™) =0
s
= u?! = h (constant)
= ' 02@=h=>hds=u2dv
ds

The metric on the surface of revolution is given by
ds? = gy, (du)® + 28,5 dudv+ gp(dv)*
ds? = cosec? a (du)? + u2(dv)

h2ds® = h2 coseca(du)® + h2u*(dv)®
u* (dv)® — h2u*(dv)® = h? cosec? o(du)?
u*{u? — h? (dv)® = h* cosec? o (du)*
h du

g8in o, dvz———z—-z-
uu“—h

y ¢ il

On integrating, we get vsina + B = % sec™t (%)
1| W .
= sec (7{) =vsina +§
u :
= z=sec(vsmu:+ﬁ)
= u = hsec(vsino + )

[ =]
- Ul“dsJ‘
(i)

ffrom Eq. ()]

Q 3. ,Fﬁd the differential equation of geodesic on a surface.

(2017, 15, 09, 04, 01)

Or Define geodesics with example and also find the
differential equation of geodesics on a surface. (2013)

Sol. Let the equation of surface be ¥ = ¥ (1*) and equation of a curve on
this surface be u® = u*(s) and if the curve is a geodesic, then p’ = N°,

By Frenet’s formula, we have
| tri — X»i i kpz
= x* = kN

)
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On multiplying Eq. (i) by 9; &, we get

X 9% =k 3y & N [ 95 #-N =01

= K s =0 [ 883?——%#] ...(3)
' d u®
Since, =d, Lu = = o (df]
ds
;. d (dé}duP B -

xfiz — sy rﬁ
= duﬁ[ds] ds dB(a?xiu =
= =3 0, Xyl g Hpt ...(3i5)
By usmg Gauss equation, it is given by

o, By =dg, N [r o, By=0p 00 -0, ¥ TE]
= 950,¥ —0,¥Tf =dp, N’
= - g 3, ¥ =dp, N + 9, £ T, - (iv)

Using this in Eq. (ii), we get
K = @y N+ apx"rgT TLATIE g ayxi Wy
;¥ =0=20+ 8ps Tl LTI Sys =0 (%)
[ 95 2'N' =0,8, © 35 © = g,]
Now, multiplying Eq. (v) by £*° and using g® 8p5 =8, , we get

geTp Wt 3% 1" =0
= u* + T, Wb =0

d?]la dub du’

+ T =0 OB =1,
ds” M ds ds ds [ b ]



