Chapter Four

SEQUENCES

(b) Important Points from the Chapter

- 1. Sequences Let $\langle X, d \rangle$ be a metric space and N be the set of natural numbers. Then, a sequences in X is a mapping $f: N \to X$ such that $f(n) = a_n \in X$, $\forall n \in N$, where $a_n = f(n)$ is called the nth term of the sequence f.
- 2. Subsequences Let $f: N \to X$ be a mapping and defined as $f(n) = a_n, \forall n \in N$, i.e. $\langle a_n \rangle$ be a sequence in X. (2007, 1990)
- 3. Range of a Sequence Let $f: N \to X$ be a sequence defined by $f(n) = a_n$. Then, the set $A = \{a_1, a_2, \ldots, a_n, \ldots\}$ is said to be the range of the sequence $< a_n >$.
- 4. Bounded Sequence A sequenced $\langle a_n \rangle$ is said to be a bounded sequence iff is a range set $A = \{a_1, a_2, ..., a_n, ...\}$ is a bounded set X, i.e. A has a finite diameter.
- 5. Convergence of a Sequences Let < X, d > be a metric space. A sequence $< a_n >$ in X is said to converge to a point $a \in X$ iff for each $\varepsilon > 0$, there exists a positive integer δ such that $d(a_n, a) < \varepsilon, \forall n \ge \delta$. In other words, a sequence $< a_n >$ in X is said to converge to a point $a \in X$ iff for each open sphere $S_{\varepsilon}(a)$, centred on a, there exists a positive integer δ such that $a_n \in S_{\varepsilon}(a)$, $\forall n \ge \delta$.

Here, a is called the **limit of the sequence** and we write

$$\lim_{n\to\infty} a_n = a \implies a_n \to a \text{ as } n\to\infty$$

- 6. Cauchy Sequence A sequence $< a_n >$ in a metric space X is said to be Cauchy sequence iff for each $\varepsilon > 0$, there exists positive integer δ such that $m, n \ge \delta \implies d(a_m, a_n) < \varepsilon$. For the sufficiently large values of n, the terms of a Cauchy sequence are getting closer and closer to each other.
- 7. Complete Metric Space A metric space $\langle X, d \rangle$ is said to be a complete metric space iff every Cauchy sequence in X converges to a point in X.
- 8. Nested Sequence Let < X, d > be a metric space. A sequence $< F_n >$ of subsets of X is said to be monotonic decreasing or nested sequence iff
 - $F_1\supset F_2\supset F_3\supset...\supset F_n\supset F_{n+1}\supset...$
- 9. Cantor's Intersection Theorem Let $\langle X, d \rangle$ be a metric space and $\langle F_n \rangle$ be a nested sequence of non-empty closed subset of X such that diam $F_n \to 0$ and $n \to \infty$. Then, X is complete if and only if $\bigcap_{n=1}^{\infty} F_n$ consists of exactly one point. (2007, 01, 1999)

10. Cluster Points Let $\langle a_n \rangle$ be a sequence in a metric space X. A point $a \in A$ is said to be a cluster point of the sequence $\langle a_n \rangle$ iff for every $\varepsilon > 0$ and any positive integer δ , there exists a positive integer $n \ge \delta$ such that

$$d(a, a_n) < \varepsilon \text{ or } a_n \in S_{\varepsilon}(a).$$

Very Short Answer Questions

Q 1. Prove that every convergent sequence in a metric space (X, d) is a bounded sequence. (2016)

Sol. Let $\langle a_n \rangle$ be a convergent sequence in the metric space (X, d) and $\lim_{n \to \infty} a_n = a$. Then, for $\varepsilon = 1$, there exists a positive integer $n_0 \in N$ such that

$$d(a_n, a) < 1, \forall n \ge n_0$$

Let $k = \max\{1, d(a_1, a), d(a_2, a), ..., d(a_{n-1}, a)\}.$

Clearly, k is some positive real number and $d(a_n, a) \le k$, $\forall n \in \mathbb{N}$.

Thus, the range set $A = \{a_1, a_2, ..., a_n, ...\}$ is bounded.

Hence, the sequence $< a_n >$ is bounded.

Q 2. If Y is a complete subspace of a metric space < ``, d>, then prove that Y is closed in X.

Sol. Let $x \in X$ be a limit point of Y and there is a sequence $\langle x_n \rangle$ in Y, none of which equals x, such that $x_n \to x$

Since, $\langle x_n \rangle$ is a convergent sequence in Y, then it is a Cauchy sequence in Y.

Thus, X is the limit of the Cauchy sequence $\langle X_n \rangle \subset Y$.

 \Rightarrow Y is a complete metric space.

Therefore $X \in Y$.

Thus, Y contains all its limit points showing that Y is closed.

Q 3/ Prove that in a metric space, every Cauchy sequence is bounded but its converse is not true. (2010, 08)

Sol. Let $< a_n >$ be a Cauchy sequence in a metric space X and taking $\varepsilon = 1$. Then, for $\varepsilon = 1$, there exists a positive integer δ such that

$$m, n \ge \delta \Rightarrow d(a_m, a_n) < 1$$

Let $m \ge \varepsilon$ be some fixed positive integer, then a_m is finite.

Therefore, $n \ge \delta \Rightarrow d(a_n, a_\delta) < 1$

...(i)

Thus, Eq. (i) holds, except for $a_1, a_2, ..., a_{\delta-1}$

Let $r = \max \{d(a_1, a_{\delta}), d(a_2, a_{\delta}), ..., d(a_{\delta-1}, a_{\delta}), 1\}.$

Since, the maximum of a finite set of real numbers cannot be infinite.

(2013)

Therefore, r is positive finite real number.

$$d(a_n, a_{\delta}) \le r, \forall n \in N$$

Hence, the range set of the sequence $< a_n >$ is bounded, i.e. the Cauchy sequence $< a_n >$ is bounded.

To show the converse, we consider a sequence

 $\langle a_n \rangle = \langle 1, 0, 1, 0, 1, 0, ... \rangle$ in the usual metric space R_u .

This sequence is bounded, in the range set {1, 0}.

Hence, it is non-convergent.

Q 4. Prove that if a sequence $\langle a_n \rangle$ in a metric space is not a Cauchy sequence, it can never converge to any point in the metric space. (2012)

Sol. Let (R, d) be the usual metric space d(x, y) = |x - y|.

Since, the sequence $\langle a_n \rangle = \langle -1 \rangle^n = \langle -1, 1, -1, 1, ... \rangle$ is not a Cauchy sequence. If $\{a_n\}$ is a Cauchy sequence, then $\varepsilon = 1$, there exists a positive integer m such that $|a_n - a_m| < 1$, $\forall n \ge m$. If m is an even integer, then $a_m = 1$.

We take n=2m+1>m from which $a_n=-1$ and $|a_n-a_m|=|-1-1|=|-2|=2 \not\subset 1$, a contradiction.

If m is an odd integer, then $a_m = -1$.

We can choose n=2m>m for which $a_n=1$ and $|a_n-a_m|=|1+1|=2 \not\subset 1$ a contradiction.

So, the sequence $<(-1)^n>$ is not a Cauchy sequence.

Now, $< a_n >$ can never converge to any point in metric space. Since, $\lim_{n\to\infty} a_n = l$.

Then, for $\varepsilon = 1/2$, there exists a positive integer m such that

$$|a_n - l| < 1/2 \text{ for } n \ge m$$
 ...(i)

From Eq. (i), |1-l| < 1/2 for $n \ge m$ and n is even and |-1-l| < 1/2 for $n \ge m$ and n is odd or |1+l| < 1/2 for $n \ge m$ and n is odd.

So,
$$2 = |(1 + l) + (1 - l)|$$

$$\Rightarrow \qquad 2 \le |1+l|+|1-l|$$

$$\Rightarrow <1/2+1/2=1$$

 \Rightarrow 2 < 1, which is a contradiction.

Hence, $<(-1)^n>$ is not convergent.

Q 5 By an example, show that the limit of convergent sequence need not be a limit point of the range set of the sequence.

Sol. Let a constant sequence $\langle a_n \rangle_{n=1}^{\infty} = \langle 1, 1, 1, 1, ... \rangle$ is a metric space in R.

Since, $a_n \to 1$ as $n \to \infty$, therefore 1 is limit of sequence $a_n > \infty$. Then, the range set of sequence a_n is

$$E = \{1, 1, 1, 1, ...\} = \{1\} \subseteq R$$

Since, E is finite set and E has no limit point.

Hence, the limit of convergent sequence need not be a limit point of the range set of the sequence.

Q 6. Let < X, d > be a complete metric space and Y be a subspace of X. Prove that Y is complete iff Y is a closed subset of X. (2009)

Or Let (X,d) be a complete metric space and Y be a subspace of X. If Y is closed in X prove that Y is also complete. (2018)

Sol. Let $\langle x_n \rangle$ be a Gauchy sequence in Y.

Therefore, $\langle x_n \rangle$ is a Cauchy sequence in X.

Since, $Y \subset X$ and X is a complete metric space.

Then, there exists $X_0 \in X$ such that $X_n \to X_0$ as $n \to \infty$.

 \Rightarrow Every neighbourhood of X_0 contains all but finitely many terms of the sequence $\langle x_n \rangle$.

 \Rightarrow Every neighbourhood of X_0 intersects with Y.

 \Rightarrow

$$X_0 \in \overline{Y}$$

 \Rightarrow

$$X_0 \in Y$$

 $[:Y \text{ is closed iff } Y = \overline{Y}]$

Hence, Y is complete.

Q 7. Prove that every convergent sequence is a Cauchy sequence.

By an example, show that converse need not be true. (2015)

Or Let $< a_n >$ be a convergent sequence in a metric space (X, d). Prove that $< a_n >$ is a Cauchy sequence. By an example show that the converse is not true in general. (2017)

Sol. Let $\langle a_n \rangle$ be a sequence in a metric space X which converges to a. Then for every $\varepsilon > 0$, there exists a positive integer $\delta > 0$,

such that

$$n \ge \delta \Rightarrow d(a_n, a) < \frac{\varepsilon}{2}$$
 ...(i)

If $m \ge \delta$, then from Eq. (i), we have

$$d(a_m, a) < \frac{\varepsilon}{2}$$
 ...(ii)

Thus, when $m, n \ge \delta$, then by triangle inequality, we have

$$d(a_m, a_n) \le d(a_m, a) + d(a, a_n)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
 [from Eqs. (i) and (ii)]

Hence, $\langle a_n \rangle$ is a Cauchy sequence.

To show the converse, take X = (0, 1] with usual metric d(x, y) = |x - y|, $y \in X$.

Now, consider the sequence $<\frac{1}{n}>$.

Let $\varepsilon > 0$ be given, then

$$\left|\frac{1}{n} - \frac{1}{m}\right| = \left|\frac{m-n}{mn}\right| \le \frac{m+n}{mn} < \varepsilon, \text{ if } \frac{nm}{m+n} > \frac{1}{\varepsilon}$$

Let $\delta \in N$ such that $\delta > \frac{mn}{m+n}$. Then, for $\epsilon > 0$, there exists is a positive

integer δ such that $n, m > \delta$

$$\Rightarrow |a_n - a_m| = \left| \frac{1}{n} - \frac{1}{m} \right| < \varepsilon$$

 $\therefore < \frac{1}{n} >$ is a Cauchy sequence.

But the sequence $<\frac{1}{n}>$ does not converge in X=(0,1].

$$\left[\because \lim_{n \to \infty} \frac{1}{n} = 0 \notin (0, 1] \right]$$

Q 8. Given an example of a Cauchy sequence which is not converse. (2006)

Sol. See the solution of Q. 7.

Short Answer Questions

Q 1. Let $\langle a_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in a metric space $\langle X, d \rangle$ and $\langle a_{n_i} \rangle_{i=1}^{\infty}$ be a subsequence of $(a_n)_{n=1}^{\infty}$. If $a_{n_i} \to a$ as $n_i \to \infty$, find the $\lim a_n$ if it exists $(n \to \infty)$. (2005)

Sol. Let $<a_n>$ be Cauchy sequence in metric space < X, d> and $<a_{n_i}>_{i=1}^{\infty}$ be a subsequence of $<a_n>$, which converges to a.

Since, $\langle a_n \rangle$ is a Cauchy sequence, for given $\varepsilon > 0$, there exists a positive integer n, such that

$$d(a_n, a_m) < \frac{\varepsilon}{2}, \forall m, n \ge n_1$$
 ...(i)

Since, $a_{n_i} \to a$ as $n_i \to \infty$, then there exists positive integer n_2 , such that

$$d(a_n, a) < \frac{\varepsilon}{2}, \forall n_i \ge n_2$$
 ...(ii)

Let $n_0 = \max\{n_1, n_2\}$, then by triangle inequality, we get

$$\begin{aligned} d(a_n, a) &\leq d(a_n, a_{g(n)}) + d(a_{g(n)}, a) \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}, \ \forall \ n \geq n_0 \end{aligned} \qquad \text{[from Eqs. (i) and (ii)]}$$

Thus, for every $\varepsilon < 0$, there exists a positive integer n_0 such that

$$d(a_n,a) < \varepsilon, \, \forall \ n \geq n_0$$

Since, $a_n \to a$ as $n \to \infty$, then $\lim_{n \to \infty} a_n = a$

Hence the sequence $\langle a_n \rangle$ converges to a.

Let $E \subset X$, where (X, d) is a metric space. Prove that ' α ' is a limit of E iff there is a sequence $(a_n) \subset E$, $a_n \neq a$ such that $a_n \to a$ as $n \to \infty$. (2015, 13, 09, 05, 02, 1995, 94)

Sol. Let a be any limit point of E, then every neighbourhood of a contains point of E different from a.

$$V_n = \left\{ x \in X : d(x, \alpha) < \frac{1}{n}, \forall n \in N \right\}$$

Since, $(V_n)_{n=1}^{\infty}$ is a sequence of neighbourhood of 'a'.

Then, $V_n \cap E/\{a\} \neq \emptyset$, $\forall n \in \mathbb{N}$.

Choosing $a_n \in V_n \cap E / \{a\}$, we get a sequence $(a_n) \subset E$. Since, $a_n \neq a$ and $a_n \to a$ as $n \to \infty$ and for let $\epsilon > 0$ we choose n_0 , such that $\frac{1}{n_0} < \epsilon$.

For $n \ge n_0$, we have $\frac{1}{n} \le \frac{1}{n_0} < \varepsilon$.

Since, $a_n \in V_n$, then $d(a_n, a) < \frac{1}{n} \le \frac{1}{n_0} < \varepsilon$, $a_n \to a$ as $n \to \infty$

Conversely If $a_n \to a$ as $n \to \infty$

 \Rightarrow Every neighbourhood of a contains all but finitely many term.

 \Rightarrow Every neighbourhood of a contains all but finitely many points of the range set $A = \{a_1, a_2, \dots, a_n, \dots\}$.

 $\Rightarrow a$ is a limit point of A.

 $[: A \subseteq E]$

Hence, a is a limit point of E.

Q 3. Let (X, d) be a complete metric space and Y be a subspace of X. If Y is a closed set in X, prove that Y is also a complete metric space. In particular, prove that [a, b] is complete in R.

Sol. Let Y be a complete subspace of metric space X. Then, we have to show that Y is closed.

Let X be a limit point of Y. Then, for every positive integer n, the open sphere $S_{Un}(a)$ must contain a point a_n of Y.

Therefore, the sequence $\langle a_n \rangle$ converges to a.

 \Rightarrow It is a Cauchy sequence in Y.

Since, Y is complete and $a_n \to a$, then we have $a \in Y$.

Hence, all the limit points of Y belongs to Y showing that Y is closed conversely, let Y is closed. Then, we have to show that Y is complete.

Let $< a_n >$ be any Cauchy sequence in Y. Then, it is also a Cauchy sequence in X.

Since, X is complete $\langle a_n \rangle$ will converge to a point $a \in X$.

Now, we show that $\alpha \in Y$.

If the range set of the sequence $< a_n >$ consists of finite number of distinct points, then $< a_n >$ will be of the form

$$\langle a_1, a_2, \dots, a_n, a, a, a, \dots \rangle$$

where, n is finite and hence $a \in Y$.

If the range set of $<\alpha_n>$ has infinitely many points, then a is the limit point of the range set of $<\alpha_n>$ and so a is also a limit point of Y.

Since, Y is closed, then $a \in Y$, i.e. $\langle a_n \rangle$ is a convergent sequence in Y. $\Rightarrow Y$ is complete.

We know that R is complete and Y = [a, b] is a subspace of R.

Also, Y = [a, b] is closed, because $Y' = [a, b] \subset Y$.

Hence, Y = [a, b] is complete in R.

Q 4. Let x_n be a sequence in a metric space X and $x \in X$. Prove that $x_n \to x$ as $n \to \infty$ if and only if every neighbourhood of x contains all, but finite number of terms of the sequence.

(2011, 08)

Sol. Let $a_n \to a$ as $n \to \infty$ and U be a neighbourhood (nbd) of 'a'.

If

 \Rightarrow

=

$$a \in U^0$$

Then,

 $\varepsilon > 0$ such that

$$S(a, \varepsilon) \subset U$$

...(i)

Since, $a_n \to a$ as $n \to \infty$.

Then, there exists a positive integer n_0 such that

$$\begin{aligned} d(\alpha_n, a) < \varepsilon, \, \forall n \geq n_0 \\ \alpha_n \in S(\alpha, \varepsilon) \, \forall n \geq n_0 \\ \alpha_n \in S(\alpha, \varepsilon) \subset u, \, \forall n \geq n_0 \end{aligned}$$

[from Eq. (i)]

U contains $a_n, \forall n \geq n_0$

Here, every neighbourhood of a contains all but finitely many terms of

Conversely If $\varepsilon > 0$ be given. Then, $V = \{x \in X \mid d(x, \alpha) < \varepsilon\}$

 $\mathbf{S}_{\mathbf{u}}$ V is an open set which contains a.

Therefore, V is a neighbourhood of a.

According to question, every neighbourhood of a contains all finite terms the sequence,

for some positive integer n_0 and for $n \ge n_0$ we have $a_n \in V$, which mplies that for $n \ge n_0$,

$$d(a_n,a)<\varepsilon$$

$$a_b \to a \text{ as } n \to \infty$$

Q 5. Prove that a subset E of X is closed iff every convergent sequence of points of E has its limit in E. (2009, 1999)

Sol. Suppose, $E \subset X$ be a closed set and let (a_n) be a sequence in E such that $a_n \to a$ as $n \to \infty$, then there arise two cases.

Case $I < a_n >$ is a constant sequence, it implies that $a_n = a$ except at most for a finite number of terms, therefore $a \in E$.

Case II If < a > is not constant, i.e. if $< a_n >$ has infinitely many distinct points, then 'a' is the point of the set

$$A = \{a_1, a_2, \dots, a_n, \dots\}.$$

 $A \subset E$

$$A \subset E \Rightarrow D(A) \subset D(E) \subset E$$

Since, a is a limit point of E.

than

$$a \in D(E) \subset E \Rightarrow a \in E$$

Conversely Let a be a limit point of E.

Let (X, d) be a metric space and $E \subset X$. Then, a is a limit point of E iff there is a sequence $(a_n) \subset E$, $a_n \neq a$ such that $a_n \to a$ as $n \to \infty$.

Therefore, there is a sequence $\langle a_n \rangle \subset E$ such that $a_n \to a$ by the hypothesis of the theorem $a \in E$ and hence E is closed.

Q 6. Prove that if a subsequence of a Cauchy sequence converges, then the whole Cauchy sequence converges to the same limit.

Sol. Let $< a_n >$ be a Cauchy sequence in a metric space X and $< a_{n_i} >$ be a subsequence of $< a_n >$ such that $a_{n_i} \to a$ as $n_i \to \infty$. Let $\epsilon > 0$ be even.

Since, $\langle a_n \rangle$ is a Cauchy sequence, then there exists a positive integer δ , such that

$$n, m \ge \delta_1 \Rightarrow d(a_n, a_m) < \frac{\varepsilon}{2}$$
 ...(i)

Further, $a_n \to a$ as $n_i \to \infty$

For every $\varepsilon > 0$, there exists a positive integer δ_2 , such that

$$n_i \ge \delta_2 \Rightarrow d(a_{n_i}, a) < \frac{\varepsilon}{2}$$
 ...(ii)

Let $\delta = \max \{\delta_1, \delta_2\}$. Then, for $n, n_i \ge \delta$, applying triangle inequality, we get

$$\begin{split} d(a_n,a) &\leq d(a_n,a_{n_i}) + d(a_n,a) \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &< \varepsilon \end{split} \qquad \qquad \text{[from Eqs. (i) and (ii)]}$$

Hence, $\langle a_n \rangle$ converges to a as $n \to \infty$.

Let $(a_n) \subset X$ be a sequence in a metric space (X, d). Prove that (a_n) is a Cauchy sequence iff diam as $N \to \infty$, where $E_N = \{a_N, a_{N+1}, a_{N+2}, a_{N+3}, \ldots\}$ and $(N = 1, 2, 3, 4, \ldots)$.

Sol. Let $<a_n>$ be a Cauchy sequence, then for every $\varepsilon>0$, there exists a positive N_0 such that

$$m, n \ge N_0 \Rightarrow d(a_m, a_n) < \varepsilon$$

$$E_{N_0} = \{a_{n_0}, a_{n_0+1}, a_{n_0+2}, \ldots\}$$

$$a_n \in E_{N_0} \text{ iff } n \ge N_0$$

If a_m , $a_n \in E_{N_0}$, then $d(a_m, a_n) < \varepsilon$

$$\Rightarrow$$
 diam $E_{N_0} \le \varepsilon$...(ii)

Now, for $N \ge N_0$, $E_N \subset E_{N_0}$

•••

:.

$$\Rightarrow$$
 diam $E_N \leq$ diam E_{N_0}

$$\Rightarrow$$
 diam $E_N \leq \text{diam } E_{N_0} \leq \varepsilon$ [from Eq. (ii)]

$$\Rightarrow$$
 diam $E_N \leq \varepsilon$

$$\Rightarrow$$
 diam $E_N \to 0$, as $N \to \infty$

Conversely Let diam $(E_N) \to 0$ as $N \to \infty$.

Then, for every $\varepsilon > 0$, there exists a positive integer N_0 such that

Hence, $\langle a_n \rangle$ is a Cauchy sequence.

Long Answer Questions

$m{Q}$ 1. Prove that a metric space X is complete iff every Cauchy sequence in X provides a convergent subsequence. (2006)

Sol. Let X be a complete metric space.

Then, there exists a Cauchy sequence $< a_n > \text{in } X$ converges to a point in X and consider $< a_{n_R} > \text{be a sequence of } < a_n > \text{in } X$.

Now, $\langle a_n \rangle$ be a Cauchy sequence in X and let $\varepsilon > 0$ be a given, then there exists $n_1 \in N$ such that

$$d(a_{n_R}, a_n) < \frac{\varepsilon}{2}, \forall n_{n_R} \ n \ge n_1$$
 ...(i)

$$\Rightarrow \qquad \qquad a_n \to a \text{ in } X \text{ as } n \to \infty$$

Then, there exists $n_2 \in N$ such that

$$d\left(a_{n},a\right)<\frac{\varepsilon}{2},\,\forall n\geq n_{2}$$
 ...(ii)

If, $n_0 = \max(n_1, n_2)$. Then, for $n, n_R \ge n_0$, applying triangle inequality, we get

$$d(a_{n_R}, a) \leq d(a_{n_R}, a_n) + d(a_n, a)$$

$$\Rightarrow \qquad d(a_{n_R}, a) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \qquad \text{[from Eqs. (i) and (ii)]}$$

$$\Rightarrow \qquad d(a_{n_R}, a) \leq \varepsilon$$

For every $\varepsilon > 0$, there exists $n_0 \in N$ such that

$$\begin{aligned} &d(a_{n_R},a)<\varepsilon,\,\forall n_R\geq n_0\\ &a_{n_R},\,a\rightarrow a\text{ in }X\text{ as }n_R\rightarrow\infty\end{aligned}$$

From the above, every Cauchy sequence in X is a convergent subsequence.

Contradiction Let $< a_n >$ be a Cauchy sequence in a metric space X and $< a_{n_R} >$ be a subsequence of $< a_n >$ such that $a_{n_R} \to a$ as $n_R \to \infty$. Suppose $\epsilon > 0$ be a given.

Since, (a_n) is a Cauchy sequence, then there exists $n_1 \in N$ such that

$$\begin{aligned} d(a_n, a_m) < &\frac{\varepsilon}{2}, \ \forall \ n, m \ge n_1 \\ a_{n_{\mathbb{R}}} \to a \text{ as } n \to \infty \end{aligned} \tag{i}$$

For every $\varepsilon > 0$, there exists $n_n \in N$ such that

$$d(a_{n_R}, a) < \frac{\varepsilon}{R} \, \forall n_R \ge n_2$$
 ...(ii)

Let $n_0 = \max\{n_1, n_2\}$. Then, for $n, n_r \ge n_0$, applying triangle inequality, we get

$$d(a_n, a) \leq d(a_n, a_{n_R}) + d(a_{n_R}, a)$$

$$\Rightarrow \qquad d(a_n, a) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \qquad \text{[from Eqs. (i) and (ii)]}$$

$$\Rightarrow \qquad d(a_n, a) < \varepsilon$$

$$\Rightarrow \qquad a_n \to a \text{ in } X \text{ as } n \to \infty$$

Thus, there exists $\varepsilon > 0$, $n_0 \in N$

$$d(a_n, a) < \varepsilon, \forall n \ge n_0$$

$$a_n \to a \text{ in } X \text{ as } n \to \infty$$

Hence, every Cauchy sequence in X, is convergent and complete metric space.

Q 2. Define a subsequence and show that limit of a convergent sequence is unique. (2007, 1990)

Sol. Part I Subsequence Let $f: N \to X$ be a mapping and defined as $f(n) = a_n, \forall n \in \mathbb{N}$, i.e. $\langle a_n \rangle$ be a sequence in X.

Part II Let f be a sequence in X given by

$$f(n) = \alpha_n$$

and let $g: N \to N$ be an increasing sequence in N

i.e.
$$n_1 < n_2$$

 $\Rightarrow g(n_1) < g(n_2)$

Then, $fog: N \to X$ is a sequence in X called subsequence of f.

Thus,
$$(fog)(n) = f(g(n)) = a_{g(n)}, n \in \mathbb{N}$$

Therefore, $\langle a_{g(n)} \rangle$ is a subsequence of $\langle a_n \rangle$.

Since, a subsequence of $\langle a_n \rangle$ depends on g, where g is arbitrary increasing sequence, then a sequence can have several subsequence.

If $\langle a_n \rangle$ is a sequence in a metric space (X, d), which converges to a point $a \in X$.

Then, we have to show that it cannot converge to any other point of the space. Let $< a_n >$ converges to another point $b \in X$.

Since, $a_n \to a$, for every $\varepsilon > 0$, then there exists $n_1 \in N$, such that

$$d(a_n, a) < \frac{\varepsilon}{2}, \forall n \ge n_1$$

Since, $a_n \to b$ for every $\varepsilon > 0$, then there exists $n_2 \in N$, such that

$$d(a_n, b) < \frac{\varepsilon}{2}, \forall n \ge n_2$$

Let $n_0 = \max \{n_1, n_2\}$. Then, $d(a_n, a) < \frac{\varepsilon}{2}$

and

$$d(a_n, b) < \frac{\varepsilon}{2}, \forall n \ge n_0$$

Now, let $n \ge n_0$, then

$$d(a, b) \le d(a, a_n) + d(a_n, b)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

[by triangle inequality]

Since, ε is arbitrary positive real number, then we have

$$d(a,b) = 0$$

$$a = b$$

Hence, the limit of a convergent sequence is unique.

Q 3 Prove that (R^n, d_2) , n > 1, is complete metric space,

where
$$d_2(x, y) = \left(\sum_{i=1}^n |X_i - Y_i|^2\right)^{1/2}, X = (X_1, X_2, ..., X_n)$$

and $Y = (Y_1, Y_2, ..., Y_n) \in \mathbb{R}^n$.

Or Define R^n , $n \ge 2$ and $d_2(x, y)$ where $x, Y \in R^n$. Prove that $d_2(x, y)$ is complete metric on R^n .

Sol. Let $(X^k)_{k=1}^{\infty}$ be a Cauchy sequence in \mathbb{R}^n .

Then, we may write x^k as follows

$$x^k = (x_1^k, x_2^k, \dots, x_n^k); k = 1, 2, 3, \dots$$

Let $\varepsilon > 0$ be any given real number.

Now (x^k) is a Cauchy sequence, there exists a positive integer n_0 , such that $d(x^k, X^P) < \varepsilon, \forall P, k \ge n_0$

$$\Rightarrow \sum_{i=1}^{n} |X_i^k - X_i^P|^2 < \varepsilon^2 \text{ for } i = 1, 2, \dots, n \quad \forall P, k \ge n_0$$

$$\Rightarrow$$
 $|X_i^k - X_i^P|^2 < \varepsilon^2 \text{ for } i = 1, 2, ..., n \text{ and } \forall P, k \ge n_0$

The sequence $(X_i^k)_{k=1}^{\infty}$ is a Cauchy sequence in R.

Since, R is complete to any real number.

Let
$$\lim_{k\to\infty} X_i^k = X_i$$
, $i = 1, 2, ..., n$, we have $x = (x_1, x_2, ..., x_n)$

Then, $x \in \mathbb{R}^n$

So, the sequence $(x^k)_{k=1}^{\infty}$ in \mathbb{R}^n converges to $x \in \mathbb{R}^n$.

Since, for every $i(1 \le i \le n)$, the sequence $(X_i^k)_{k=1}^{\infty}$ in R converges to X_i in R for $\varepsilon > 0$, there exists $n \in N$ such that

$$|X_i^k - X_i| < \frac{\varepsilon}{\sqrt{n}}, \forall k \ge n_i$$

$$|X_i^k - X_i|^2 < \frac{\varepsilon^2}{n}, \forall k \ge n_i$$

If $N_0 = \max \{n_1, n_2, \dots, n_k, \dots, n_n\}$, then we have

$$\sum_{i=1}^{n} |X_i^k - X_i|^2 < \frac{\varepsilon^2}{n} \cdot n$$

$$= \varepsilon^2, \forall k \ge n_0$$

Hence, R^n is a complete metric space.

Q 4. Define a complete metric space. Let (X, d_x) and (Y, d_y) be two complete metric spaces and (Z, d_z) be the product metric space, i.e. $Z = X \times Y$ and

$$d_Z\{(x, y), (x', y')\} = \sqrt{d_x^2(x, x') + d_y^2(y, y')}$$

where, (x, y), $(x', y') \in X \times Y$.

Prove that (Z, d_Z) is also complete metric space. (20)

Sol. Part I Complete Metric Space A metric space $\langle X, d \rangle$ is said be a complete metric space iff every Cauchy sequence in X converges to point in X.

Part II We know that $d(\langle x, y \rangle, \langle x', y' \rangle)$ is a metric on $X \times Y$.

Let $\langle x_n, y_n \rangle$ be Cauchy sequence of elements in $X \times Y$. Then, for every $\varepsilon > 0$, there exists a positive integer $\delta > 0$ such that

$$m, m \ge \delta \Rightarrow d(\langle x_n, y_n \rangle, \langle x_m, y_m \rangle) < \varepsilon$$

$$\Rightarrow \qquad \sqrt{d_x^2(x_n, x_m) + d_y^2(y_n, y_m)} < \varepsilon$$

$$\Rightarrow \qquad d_x^2(x_n, x_m) + d_y^2(y_n, y_m) < \varepsilon^2$$

$$\Rightarrow d_x^2(x_n, x_m) < \varepsilon^2 \text{ and } d_y^2(y_n, y_m) < \varepsilon^2$$

$$\Rightarrow d_x(x_n, x_m) < \varepsilon \text{ and } d_y(y_n, y_m) < \varepsilon$$

 $\Rightarrow < x_n >$ is a Cauchy sequence in X and $< y_n >$ is a Cauchy sequence in Y. Since, X and Y both are complete.

So, there exists $x \in X$ such that $X_n \to X$ and there exists $y \in Y$ such that $y_n \to y$ as $n \to \infty$.

Now,
$$d(\langle x_n, y_n \rangle, \langle x, y \rangle) = \sqrt{d_x^2(x_n, X) + d_y^2(y_n, Y)} < \varepsilon$$

For the sufficiently large n or the Cauchy sequence,

 $\langle x_n, y_n \rangle$ converges to a point $\langle x, y \rangle \in X \times Y$

Hence, $Z = X \times Y$ is complete.

Q 5. Prove that C[a, b] is complete metric space with respect to the supremum metric, where C[a, b] is the collection of all continuous real valued function on [a, b]. (2014, 04)

Sol. We know that, $d(f,g) = \sup\{|f(t) - g(t)| : t \in [a,b]\}$...(i) defined on C[a,b], where $f,g \in C[a,b]$ is a metric.

If $< f_n >$ be Cauchy sequence in C[a, b]. Then, for every $\varepsilon > 0$, there exists a positive integer δ such that $n, m \ge \delta$.

$$\Rightarrow$$
 $d(f_n, f_m) < \varepsilon$...(ii)

$$\Rightarrow \sup\{|f_n(t) - f_m(t)|, t \in [a, b]\} < \varepsilon$$

$$\Rightarrow |f_n(t) - f_m(t)| < \varepsilon, \forall t \in [a, b]$$
 ...(iii)

 $\Rightarrow < f_n(t) >$ is a Cauchy sequence in R for any fixed $t \in [a, b]$.

But R being complete, this sequence converges.

Let
$$f_n(t) \to f(t)$$
 as $n \to \infty$

i.e.
$$\lim_{n\to\infty} f_n(t) = f(t) \qquad \dots \text{(iv)}$$

Therefore, we can associate to each $t \in [a, b]$ a unique real number f(t). This define (point wise) a function f on [a, b]. Now, we will show that $f \in [a, b]$ and $f_n \to f$.

From Eq. (iii), we have

$$|f_n(t) - f_m(t)| < \varepsilon, \forall n, m \ge \delta \text{ and } \forall t \in [a, b]$$
 ...(v)

This verifies that the sequence $\langle f_n \rangle$ of continuous functions converges uniformly to the function f on [a, b] and hence the limit function f is a continuous function on [a, b].

Consequently, $f \in C[a, b]$

Also, from Eq. (v), we have

$$\sup \{ |f_n(t) - f(t)| : t \in [a, b] \} < \varepsilon, \forall n \ge \delta$$

$$d(f_n, f) < \varepsilon, \forall n \ge \delta$$

$$f_n \to f \text{ in } C[a, b]$$

Hence, C[a, b] is complete.

Q 6. State and prove Barie's Category theorem.

(2008, 06, 04, 1995, 94)

Or Prove that every complete metric space is of second category. (2012)

Sol. Let $\langle X, d \rangle$ be a complete metric space and let X is not of second category. Then, X must be of first category. So, X can be expressed as the union of a countable family of nowhere dense sets. We arrange this family of nowhere dense sets as a sequence $\langle A_n \rangle$.

Since, A_1 is nowhere dense and X is open, then there exists an open sphere $S_1 \subset X$ of radius less than 1, such that

 $S_1 \cap A_1 = \emptyset \qquad \dots (i)$

Let F_1 be the concentric closed sphere whose radius is one-half of that of S_1 .

Since, A_2 is nowhere dense and F_1^0 is an open set, then there exists an open sphere $S_2 \subset F_1^0$ of radius less than $\frac{1}{2}$, such that

$$S_2 \cap A_2 = \emptyset$$
 ...(ii)

Let F_2 be the concentric closed sphere whose radius is one-half of that of S_2 .

Since, A_3 is nowhere dense and F_2^0 is an open set, then there exists an open sphere $S_3 \subset F_2^0$ of radius less than $\frac{1}{4} = \frac{1}{2^2}$, such that

$$S_3 \cap A_3 = \emptyset$$
 ...(iii)

Continuing this process, we get a decreasing sequence $\langle F_n \rangle$ of non-empty closed subsets of X, where F_n is concentric closed sphere whose radius is one-half of that of S_n , i.e. less than $\frac{1}{2^n}$ as the radius of S_n

is less than $\frac{1}{2^{n-1}}$.

Consequently, diam $F_n < \frac{2}{2^n} \to 0$ as $n \to \infty$. Thus, $< F_n >$ is a decreasing

sequence of non-empty closed subsets of X and diam $F_m \to 0$ as $n \to \infty$. Since, X is complete, therefore by Cantor's intersection theorem, such that a point

$$x \in X$$
 such that $\bigcap_{n=1}^{\infty} F_n = \{x\}.$

Since, for every $n \in N$

$$x \in F_n \subset S_n \text{ and } S_n \cap A_n = \emptyset$$

 $x \notin A_n$ for any n

Also,
$$x \notin \bigcup_{n=1}^{\infty} A_n$$

Thus, $x \in X$ and $x \notin \bigcup_{n=1}^{\infty} A_n$

:.

$$X \neq \bigcup_{n=1}^{\infty} A_n$$
.

Thus, X can not be expressed as a countable union of nowhere dense sets so that X is not first category, which is contrary to our supposition. Hence, our supposition is wrong. Therefore, X is of second category.

Q 7. State and prove Cantor's intersection theorem.

(2016, 13, 10, 07, 01, 1991)

Or Let X be a complete metric space and $(E_n)_{n=1}^{\infty}$ be a sequence of closed and bounded sets such that

$$E_1 \supset E_2 \supset E_3 : E_n \supset E_{n+1} \supset \dots$$
 and that $\lim_{n \to \infty} E_n = 0$.

Prove that
$$\bigcup_{n=1}^{\infty} E_n$$
 consists of exactly one point. (2018)

Sol. Statement Let (X, d) be a metric space and let $\langle F_n \rangle$ be a nested sequence of non-empty closed subsets of X such that diam $F_n \to 0$ as $n \to \infty$. Then, X is complete if and only if $\bigcap_{n=1}^{\infty} F_n$ consists of exactly one point.

Proof Let X is complete for each n, we choose $a_n \in F_n$.

Since, diam $F_n \to 0$, for every $\varepsilon > 0$, then there exists a positive integer n_0 such that diam $F_{n_0} < \varepsilon$.

Since,

$$F_1 \supseteq F_2 \supseteq F_3 \supseteq \dots \supseteq F_n \supseteq F_{n+1} \supseteq \dots$$

We have, $n, m \ge n_0$

$$\Rightarrow F_n, F_m \subseteq F_{n_0} = a_n, a_m \in F_{n_0} = d(a_m, a_n) < \varepsilon$$

Thus $\langle a_n \rangle$ is Cauchy sequence in X. Since, X is complete, $a_n \to a$ for some $a \in X$.

We will prove that $\alpha \in \bigcap_{n=1}^{\infty} F_n$.

Let $m \in N$ be arbitrary.

Then,
$$n > m \Rightarrow F_n \subseteq F_m \Rightarrow a_n \in F_m$$

Since, $a_n \to a$, every neighbourhood of a contains an infinite number of point of F_m .

Thus, a is a limit point of F_m .

Since, F_m is closed, then $a \in F_m$

Since, m is arbitrary, we have

$$a \in \bigcap_{n=1}^{\infty} F_n$$

Now, suppose that there exists another point $b \in \bigcap_{n=1}^{\infty} F_n$. Then, diam

$$\left(\bigcap_{n=1}^{\infty}F_{n}\right)=\delta>0.$$

$$\bigcap_{n=1}^{\infty} F_n \subset F_n, \forall n, \text{ then}$$

$$\operatorname{diam} \left(\bigcap_{n=1}^{\infty} F_n\right) \leq \operatorname{diam} F_n, \forall n$$

$$\Rightarrow$$

$$0 < \delta \leq \operatorname{diam} F_n, \forall n$$

 \therefore diam F_n does not converge to zero which contradicts the hypothesis

Hence, a = b and so $\bigcap_{n=1}^{\infty} F_n = \{a\}.$

Conversely Let $\bigcap_{n=1}^{\infty} F_n$ consists of a single point for every nested sequence

 $< F_n >$ of non-empty closed subset F_n of X such that diam $F_n \to 0$. Then, we have to prove that X is complete.

Let $< a_n >$ be any Cauchy sequence in X.

Construct the subsets S_n of X as follow

Since, $<\alpha_n>$ is Cauchy sequence, for a given $\epsilon>0$, there exists a positive integer n_0 such that

$$\begin{aligned} d(a_m, a_n) < \varepsilon, \forall n, m \ge n_0 \\ n \ge n_0 \Rightarrow \operatorname{diam} S_n < \varepsilon \end{aligned}$$

Consequently, diam $S_n \to 0$ as $n \to \infty$

Also, $S_1 \supseteq S_2 \supseteq S_3 \supseteq \dots$ so that

$$\overline{S}_1 \supseteq \overline{S}_2 \supseteq \overline{S}_3 \supseteq \dots$$
 $[: A \supseteq B \Rightarrow \overline{A} \supseteq \overline{B}]$

We know that,

$$\operatorname{diam} \overline{S} = \operatorname{diam} S$$

Hence, $\langle \overline{S}_n \rangle$ is a nested sequence of closed subsets of X whose diameter tends to zero.

Then, by hypothesis, there exists a unique point $a \in X$ such that

$$a\in \mathop{\cap}\limits_{n=1}^{\infty}\overline{S}_n$$

We claim that the Cauchy sequence $\langle a_n \rangle$ converges to a.

Since, diam $\overline{S}_n \to 0$, for a given $\varepsilon > 0$, there exists a positive integer n_0 , such that diam $\overline{S}_{n_0} < \varepsilon$.

Consequently,
$$n > n_0 \implies a_n$$
, $a \in \overline{S}_{n_0}$

$$\Rightarrow$$
 $d(a_n, a) < \varepsilon$

$$< a_n >$$
converges to $a \in X$.

Hence, X is complete.