THEOREMS BASED ON RESIDUES AND ARGUMENT PRINCIPLE

(b) Important Points from the Chapter

1. If f(z) is analytic within and on a closed contour C except at a finite number of poles, and has no zero on C, then

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = N - P$$

where, N is the number of zeroes and P the number of poles of f(z) inside C.

A pole or zero of order n must be counted n times. (2009, 1993, 91)

2. If g(z) is analytic function, regular inside and on a simple closed contour C and if f(z) is also analytic inside and on C, (except for a finite number of poles) having zeroes at z_1, z_2, \ldots, z_m and poles at p_1, p_2, \ldots, p_n , then

$$\frac{1}{2\pi i} \int_C \frac{f'(z) g(z)}{f(z)} dz = \sum_{r=1}^m g(z_r) - \sum_{s=1}^n g(p_s).$$

(2011, 04, 02, 1999, 95, 94, 92, 90)

3. Rouche's Theorem Let f(z) and g(z) be analytic inside and on a simple closed curve C and let |g(z)| < |f(z)| on C. Then, f(z) and f(z) + g(z) have the same number of zeroes inside C.

(2014, 09, 03, 1999, 97, 92)

- 4. Fundamental Theorems of Algebra Every polynomial of degree n has exactly n zeroes. (2013, 11, 08, 03, 01, 2000, 1998, 96, 93)
- 5. Argument Principle If f(z) is meromorphic inside a closed contour C and has no zero on C, then $\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = N P$, where N is the number of zeroes and P the number of poles inside C, (a pole or zero of order m must be counted m times)
 - Note $N P = \frac{1}{2\pi} \Delta_C$ arg f(z), where Δ_C denotes the variation in arg f(z) as z moves once round C.

♦ Very Short Answer Questions

Q 1. Using Rouche's theorem, determine the number of zeroes of the polynomial $P(z) = z^{10} - 6z^7 + 3z^3 + 1$ in |z| < 1.

Sol. Here,
$$P(z) = z^{10} - 6z^7 + 3z^3 + 1$$

Let
$$f(z) = -6z^7$$
, $g(z) = z^{10} + 3z^3 + 1$

Then,
$$P(z) = f(z) + g(z)$$

Consider the circle C defined by |z| = 1.

Then, f(z) and g(z) both are analytic within and upon C and

$$\left| \frac{g}{f} \right| = \left| \frac{z^{10} + 3z^3 + 1}{-6z^7} \right|$$

$$\leq \frac{|z|^{10} + 3|z|^3 + 1}{6|z|^7}$$

$$= \frac{1^{10} + 3(1)^3 + 1}{6(1)^7} = \frac{5}{6} < 1$$

$$\left| \frac{g}{f} \right| < 1 \text{ or } |g| < |f|$$

 \Rightarrow

On applying Rouche's theorem, we get f(z) + g(z) - P(z) has the same number of zeroes inside C as $f(z) = -6z^7$.

But $f(\cdot)$ has seven zeroes inside C.

Hence, P(z) has seven zeroes inside C.

Q 2. Apply Rouche's theorem to determine the number of roots of the equation $z^8 + 4z^5 + z^2 - 1 = 0$, that lie inside the circle |z| = 1.

Sol. Consider the circle C defined by |z|=1.

Take
$$f(z) = -4z^5$$
, $g(z) = z^8 + z^2 - 1$

Then,

$$\left| \frac{g(z)}{f(z)} \right| = \left| \frac{z^8 + z^2 - 1}{-4z^5} \right| \le \frac{|z|^8 + |z|^2 + 1}{4|z|^5} = \frac{1^8 + 1^2 + 1}{4 \cdot 1^5} = \frac{3}{4} < 1$$

$$\left| \frac{g}{f} \right| < 1 \text{ or } |g| < |f|$$

or

Now, f and g are analytic functions within and upon the contour C such that |g| < |f|.

On applying Rouche's theorem, we find $f + g = z^8 - 4z^5 + z^2 - 1$ has the same number of zeroes inside C as f(z), but $f(z) = -4z^5$ has five zeroes all located at the origin. It follows that f + g has 5 zeroes inside C.

Hence, the equation has 5 roots inside |z| = 1.

Q 3. For which value of the real number of 'a', the function $z^n e^a - e^z$ will have n zeroes inside |z| = 1?

(2008, 05, 04, 01, 2000, 1997, 95, 94, 92, 90)

Sol. We have to find zeroes of

Let us take $f(z) = z^n e^a$ and $g(z) = -e^z$

On the unit circle, |z| = 1, we have

$$|f(z)| = |z^n e^a| \le e^a$$
 and $|g(z)| = |-e^z| = e$

Now, f(z) and f(z) + g(z) will have of same number of zeroes inside |z| = 1, provided |g(z)| < |f(z)| and thus $e < e^a$, i.e. a > 1.

Thus, if a > 1, then f(z) and f(z) + g(z) have same number of zeroes inside |z| = 1. But $f(z) = z^n e^a$ has n zeroes inside |z| = 1.

Hence, f(z) + g(z), i.e. $z^n e^a - e^z$ has n zeroes inside the circle |z| = 1 provided a > 1.

Short Answer Questions

Q 1. If g(z) is analytic function, regular inside and on a simple closed contour C and if f(z) is also analytic inside and on C, (except for a finite number of poles) having zeroes at z_1, z_2, \ldots, z_m and poles at p_1, p_2, \ldots, p_n , then prove that

$$\frac{1}{2\pi i} \int_C \frac{f'(z) g(z)}{f(z)} dz = \sum_{r=1}^m g(z_r) - \sum_{s=1}^n g(p_s).$$

(2011, 04, 02, 1999, 95, 94, 92, 90)

Sol. Let $z = z_r$ be a simple zero of f(z), so that the function f(z) can be written as $f(z) = (z - z_r) \phi(z)$, where $\phi(z)$ being analytic inside and on C, in the neighbourhood of $z = z_r$, where $\phi(z_r) \neq 0$.

Taking logarithmic differentiation, we get

$$\frac{f'(z)}{f(z)} = \left\{ \frac{1}{(z-z_r)} \right\} + \left\{ \frac{\phi'(z)}{\phi(z)} \right\} \quad \left[\because \log f(z) = \log (z-z_r) + \log \phi(z) \right]$$

where, $\phi'(z)$ is analytic at $z = z_r$ thus

$$\left\{\frac{f'(z)}{f(z)}\right\}g(z) = \left\{\frac{g(z)}{(z-z_r)}\right\} + \left\{\frac{g(z)\phi'(z)}{\phi(z)}\right\}$$

Since, $g(z) \phi'(z)/\phi(z)$ is analytic and regular at $z = z_r$ and $\{f'(z)/f(z)\} g(z)$ has a simple pole at $z = z_r$ with residue $g(z_r)$, taking into account all the zeroes of f(z) inside C, we have

$$\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} g(z) dz = \sum_{r=1}^{m} g(z_r)$$

Similarly, if $z = p_s$ is a simple pole of f(z), then we can write

 $f(z) = \phi(z)/(z - p_s)$, $\phi(z)$ has no poles at $z = p_s$, which gives

$$\frac{f'(z)}{f(z)} = -\left\{\frac{1}{z - p_s}\right\} + \left\{\frac{\phi'(z)}{\phi(z)}\right\} \qquad [\because \log f(z) = \log (z - p_s) + \log \phi(z)]$$

$$\begin{cases} f'(z) \\ f'(z) \\ f'(z) \\ f'(z) \end{cases} = \left\{\frac{\phi'(z)}{\phi(z)}\right\} = \left\{\frac{\phi'(z)}{\phi(z)}\right\}$$

$$\left\{\frac{f'(z)}{f(z)}\right\}g(z) = -\left\{\frac{g(z)}{z - p_s}\right\} + \left\{\frac{\phi'(z) g(z)}{\phi(z)}\right\},\,$$

where, $\frac{\phi'(z) g(z)}{\phi(z)}$ is analytic and regular at $z = p_s$.

Thus, $\left\{\frac{f'(z)}{f(z)}\right\}g(z)$ has a simple pole at $z=p_s$ with residue $-g(p_s)$.

Taking into account all the poles of f(z), we have

$$\frac{1}{2\pi i} \int_{C} \left\{ \frac{f'(z)}{f(z)} \right\} g(z) dz = -\sum_{s=1}^{n} g(p_{s})$$

Now, combining both the results, we get

$$\frac{1}{2\pi i} \int_C \left(\frac{f'(z)}{f(z)} \right) g(z) dz = \sum_{r=1}^m g(z_r) - \sum_{s=1}^n g(p_s)$$
 Hence proved.

- Q 2. State and prove Rouche's theorem on zeroes of an analytic function. (1999)
 - Or State and prove Rouche's theorem.

(2014, 09)

- Or If f(z) and g(z) are analytic within and on a simple closed contour C, and if |g(z)| < |f(z)| on C, then f(z) + g(z) have same number of zeroes inside C.

 (2010, 67, 03, 1997, 92)
- **Sol.** Statement Rouche's Theorem Let f(z) and g(z) be analytic inside and on a simple closed curve C and let |g(z)| < |f(z)| on C. Then, f(z) and f(z) + g(z) have the same number of zeroes inside C.

Proof Since, |g(z)| < |f(z)|, therefore

$$\left| \frac{g(z)}{f(z)} \right| < 1 \text{ on } C, \text{ where } |f(z)| \neq 0.$$

Otherwise, $\left| \frac{g(z)}{f(z)} \right|$ will be infinity and not less than 1.

Also, $|f(z) + g(z)| = |f(z) - \{-g(z)\}| > |f(z)| - |g(z)| \neq 0$ [: |g(z)| < |f(z)|] : $f(z) + g(z) \neq 0$ and hence neither f(z) nor $\{f(z) + g(z)\}$ has zero on C.

Let
$$F(z) = \frac{g(z)}{f(z)} \Rightarrow |F(z)| = \left| \frac{g(z)}{f(z)} \right| < 1 \text{ on } C$$

$$\Rightarrow |F(z)| < 1 \text{ on } C$$

If immediately follows that g(z) and f(z) are not zero on C, then we have

$$F(z) = \frac{g(z)}{f(z)} \text{ on } C, \text{ i.e. } g = fF$$

$$g' = f'F + fF'$$

Let N_1 and N_2 be the number of zeroes of f(z) and f(z) + g(z) respectively inside C, as these functions have no poles inside C.

By using the formula,

٠.

$$\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = N - P$$
We have, $N_{1} = \frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz$ and $N_{2} = \frac{1}{2\pi i} \int_{C} \frac{f' + g'}{f + g} dz$

$$\therefore N_{2} - N_{1} = \frac{1}{2\pi i} \int_{C} \frac{f' + g'}{f + g} dz - \frac{1}{2\pi i} \int_{C} \frac{f'}{f} dz$$

$$= \frac{1}{2\pi i} \int_{C} \frac{f' + f' F + f F'}{f + f F} dz - \frac{1}{2\pi i} \int_{C} \frac{f'}{f} dz$$

$$= \frac{1}{2\pi i} \int_{C} \frac{f'(1 + F) + f F'}{f(1 + F)} dz - \frac{1}{2\pi i} \int_{C} \frac{f'}{f} dz$$

$$= \frac{1}{2\pi i} \int_{C} \frac{f'}{f} dz + \frac{1}{2\pi i} \int_{C} \frac{F'}{1 + F} dz - \frac{1}{2\pi i} \int_{C} \frac{f'}{f} dz$$

$$= \frac{1}{2\pi i} \int_{C} \frac{F'}{f} dz$$

Again, $1 + F \neq 0$ on C, because |F(z)| < 1 and F'(z) is analytic on C, since F is analytic on C. [: derivative on an analytic function is analytic].

Thus $\frac{F'}{1+F}$ is analytic on C, hence by Cauchy's theorem, we have

$$\int_C \frac{F'}{1+F} dz = 0$$

$$N_2 - N_1 = 0 \Rightarrow N_1 = N_2$$

which proves the theorem.

Q 3. State and prove Fundamental theorem of algebra. (2008)

Or Prove that every polynomial of degree n has exactly n zeroes.
(2017, 13, 11, 06, 03, 01, 2000, 1998, 96, 93, 91)

Sol. Statement Let $P(z) = a_0 + a_1 z + a_2 z^2 + ... + a_n z^n = 0$, where $a_n \neq 0$ be a polynomial equation of degree n.

Proof We will prove this by contradiction method. We suppose that the result is not true, i.e. P(z) has no zero or P(z) = 0 has no root.

Let
$$f(z) = \frac{1}{P(z)}$$

Since, P(z) has no zero, therefore f(z) is analytic everywhere in the domain.

Now, we have
$$f(z) = \frac{1}{P(z)} = \frac{1}{a_0 + a_1 z + a_2 z^2 + ... + a_n z^n}$$

$$= \frac{1}{z^n} \left\{ \frac{1}{\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + ... + a_n} \right\} \to 0, \text{ as } z \to \infty$$

Thus, for every $\varepsilon > 0$, there exists $a \delta > 0$, such that

$$|f(z)| = \left|\frac{1}{P(z)}\right| < \varepsilon \text{ for } |z| > \delta$$

Also, f(z) is continuous in the bounded domain $|z| \le \delta$, therefore it is bound in this domain.

Thus, there exists a number k such that $|f(z)| \le k$ for $|z| \le \delta$, i.e. $|f(z)| \le \max(k, \varepsilon)$ for every z.

Now, let max $(k, \varepsilon) = m$, then

$$|f(z)| = \left|\frac{1}{P(z)}\right| \le m, \ \forall \ z$$

Hence, by Liouville's theorem, f(z) is constant, i.e. P(z) must be constant, which is a contradiction as P(z) cannot be constant, when $n \ge 1$ and $a \ne 0$. Therefore, P(z) must have a zero.

Hence, the polynomial P(z) has at least one zero or the polynomial equation P(z) = 0 has at least one root.

Q 4. If a > e, then prove by the help of Rouche's theorem that the equation $e^z = az^n$ has n roots inside the circle |z| = 1.

(1997, 95, 94)

Sol. Let C denote the circle |z| = 1 with centre at the origin and radius unity.

The given equation is $az^n - e^z = 0$

Take $f(z) = \alpha z^n$, $g(z) = -e^z$

It is evident that both f(z) and g(z) are analytic inside and on C.

Now,
$$\left| \frac{g(z)}{f(z)} \right| = \left| \frac{-e^z}{az^n} \right| = \left| \frac{e^z}{az^n} \right| = \frac{|e^z|}{|a| \cdot |z|^n} = \frac{e^z}{a |z|^n}$$
 [since, a is positive]
$$= \frac{\left| 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots \right|}{a |z|^n} \le \frac{1 + |z| + \frac{1}{2!} |z|^2 + \frac{1}{3!} \cdot |z|^3 + \dots}{a |z|^n}$$

$$= \frac{1}{a} \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots \right)$$
 [: $|z| = 1$]
$$= \frac{e}{a} < 1$$
 [: $a > e$]

|g(z)| < |f(z)| on C. Thus, all the conditions of Rouche's theorem are satisfied, so f(z) + g(z) has the same number of zeroes inside C as f(z). But $f(z) = az^n$ has n zeroes, all located at the origin, consequently $az^n - e^z$ has n zeroes inside C.

Hence, the equation $e^z = az^n$ has n roots inside |z| = 1.

Q 5. State and prove Fundamental theorem of Algebra. Find real number a for which the function $(z^n e^a - e^z)$ will have n zeroes inside |z| = 1.

Sol. Part I See the solution of Q. 3.

Part II See the solution of Q. 3 of Very Short Answer Questions.

Q 6. State and prove Hurwitz's theorem.

(2017)

Sol. Statement Let $f_n(z)$ be a sequence of analytic functions defined on a domain D such that $f_n(z) \neq 0$, $\forall z \in D$, n = 1, 2, 3, ... Assume that $f_n(z)$ converges uniformly to f(z) on every bounded and closed subset of D. Then, the limit function is either identically zero or nowhere zero in D.

Proof Suppose f(z) is not identically zero in D. Then, we have to show that f(z) is never zero in D. Assume the contrary to hold, i.e. $f(z_0) = 0$ for some z_0 in D. Since, zeroes of an analytic function are isolated, therefore there exist a deleted neighbourhood $N_{\delta}(z_0)$ of z_0 in which the function is non-zero. Therefore,

$$f(z) \neq 0, z \in 0 < |z - z_0| < \delta, \delta > 0$$

In particular, f(z) is non-zero on the circle.

$$C: 0<|z-z_0|<\delta_1$$
 , $\delta_1<\delta$.

Let

$$\varepsilon = \min\{|f(z)|: z \in C\}$$

Since, C is bounded and closed, it follows by the given hypothesis that $f_n(z)$ converges uniformly to f(z) on C. Hence, for above $\varepsilon > 0$, there exist n_0 such that

$$|f_n(z) - f(z)| < \varepsilon, \forall n > n_0$$
 ...(i)

Due to the definition of ϵ , note that

$$\varepsilon \le |f(z)|$$
 for $z \in C$

Hence, on using Eq. (i), we have

$$|f_n(z) - f(z)| < |f(z)|, \forall n > n_0 \text{ for all points on } C.$$

Now, Rouche's theorem asserts that the functions f(z)

and
$${f_n(z) - f(z)} + f(z) = f_n(z)$$

have the same number of zeroes in C. But f(z) has a zero at z_0 .

So, $f_n(z)$ must also have a zero in C.

This contradicts the hypothesis, hence we conclude that f(z) can never be zero in D (in case it is not identically zero).

Long Answer Questions

Q 1. State Rouche's theorem. Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1 and |z| = 2.

Or Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between circles |z| = 1 and |z| = 2. (2018)

Sol. Part I Rouche's Theorem Let f(z) and g(z) be analytic inside and on a simple closed curve C and let |g(z)| < |f(z)| on C. Then, f(z) and f(z) + g(z) have the same number of zeroes inside C.

Part II Let C_1 represents the circle |z| = 1 and C_2 represents the circle |z| = 2.

Suppose that f(z) = 12 and $g(z) = z^7 - 5z^3$.

We observe that both f(z) and g(z) are analytic within and on C_1 .

Now, we have $\left| \frac{g(z)}{f(z)} \right| = \left| \frac{z^7 - 5z^3}{12} \right| \le \frac{|z|^7 + |-5z^3|}{12}$ = $\frac{|z|^7 + 5|z|^3}{12} = \frac{1+5}{12} = \frac{1}{2}$

Since, |z| = 1 on C, therefore

$$\left| \frac{g(z)}{f(z)} \right| < 1 \Rightarrow |g(z)| < |f(z)| \text{ on } C_1$$

 \therefore By Rouche's theorem, $f(z) + g(z) = z^7 - 5z^3 + 12$ has the same number of zeroes inside C_1 as f(z) = 12.

Since, f(z) = 12 has no zeroes inside C_1 , therefore $f(z) + g(z) = z^7 - 5z^3 + 12$ has no zero inside C_1 .

Let $F(z)=z^7$, $\phi(z)=12-5z^3$, we observe that both F(z) and $\phi(z)$ are analytic within and on C_2 , we have

$$\left| \frac{\phi(z)}{F(z)} \right| = \frac{|12 - 5z^{3}|}{|z|^{7}} \le \frac{12 + |-5z^{3}|}{|z|^{7}}$$

$$\le \frac{|12| + 5|z|^{3}}{|z|^{7}} = \frac{12 + 5 \cdot 2^{3}}{2^{7}} = \frac{52}{128} < 1 \quad [: |z| = 2]$$

Thus, on C_2 , $|\phi(z)| < |F(z)|$

Now, by Rouche's theorem, F(z) and $\phi(z) = z^7 - 5z^3 + 12$ has the same number of zeroes as $F(z) = z^7$ inside C_2 .

Since, $F(z) = z^7$ has all the seven zeroes inside the circle |z| = 2, as they are all located at the origin, therefore all the zeroes of $z^7 - 5z^3 + 12$ lie inside the circle C_2 .

Hence, all the roots of the equation $z^7 - 5z^3 - 12 = 0$ lie between the circles |z| = 1 and |z| = 2.

Q 2. If f(z) is analytic within and on a closed contour C except at a finite number of poles and has no zero on C,

then
$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = N - P$$
, where N is the number of

zeroes and P the number of poles of f(z) inside C. A pole or zero of order n must be counted n times.

(2012, 09, 1993, 91)

Or State and prove argument principle.

Sol. Let f(z) be an analytic function within and on a simple closed contour C except for a joint number of poles inside C. Suppose that $f(z) \neq 0$ on C.

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the poles of order p_1, p_2, \ldots, p_n respectively and $\beta_1, \beta_2, \ldots, \beta_m$ be the zeroes of order q_1, q_2, \ldots, q_m respectively of f(z) lying inside C.

Enclose each pole and zero by non-overlapping circles C_1, C_2, \ldots, C_n and $\gamma_1, \gamma_2, \ldots, \gamma_m$ each of radii ρ . This can always be done, since the poles and zeroes are isolated.

.. By extension of Cauchy's theorem to multi-connected region, we have

$$\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = \sum_{r=1}^{n} \frac{1}{2\pi i} \int_{C_{r}} \frac{f'(z)}{f(z)} dz + \sum_{i=1}^{m} \frac{1}{2\pi i} \int_{\gamma_{i}} \frac{f'(z)}{f(z)} dz \qquad ...(i)$$

Since, α_r is a pole of order p_r of f(z), therefore we may write

$$f(z) = \frac{\phi_r(z)}{(z - \alpha_r)^{p_r}}$$

where, $\phi_r(z)$ is analytic and non-zero at α_r .

$$\log f(z) = \log \phi_r(z) - p_r \log (z - \alpha_r)$$

On differentiating both the sides, we have

$$\frac{f'(z)}{f(z)} = \frac{\phi'_r(z)}{\phi_r(z)} - \frac{p_r}{z - \alpha_1}$$

Since, $\phi_r(z)$ is analytic at α_r therefore $\phi'_r(z)$ and $\frac{\phi'_r(z)}{\phi_r(z)}$ are analytic.

$$\int_{C_r} \frac{\phi'_r(z)}{\phi_r(z)} dz = 0$$

٠.

Now,
$$\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{C} \frac{\phi'(z)}{\phi(z)} dz - \frac{p_{r}}{2\pi i} \int_{C} \frac{dz}{(z - \alpha_{r})}$$

$$= 0 - \frac{pr}{2\pi i} \int_{0}^{2\pi} \frac{pie^{i\theta}d\theta}{pe^{i\theta}}$$

$$\therefore \qquad z - \alpha_{r} = \rho e^{i\theta} \text{ on } C_{r}$$

$$0 \le \theta \le 2\pi$$

$$\Rightarrow \qquad \frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = -p_{r} \qquad \dots(ii)$$

Also, since β_s is a zero of order q_s of f(z), therefore we may write

$$f(z) = (z - \beta_s)^{q_s} \psi_s(z)$$

where, $\psi_s(z)$ is analytic and non-zero at β_s .

$$\log f(z) = q_s \log (z - \beta_s) + \log \psi_s(z)$$

On differentiating both the sides, we get

$$\frac{f'(z)}{f(z)} = \frac{q_s}{z - \beta_s} + \frac{\psi'_s(z)}{\psi_s(z)}$$

Since, $\psi_s(z)$ is analytic at β_s .

Therefore, ψ'_s are analytic at β_s and $\frac{\psi_s(z)}{\psi_s(z)}$ are analytic at β_s .

$$\therefore \int_{\gamma_s} \frac{\psi'_s(z)}{\psi_s(z)} dz = 0$$
Now,
$$\frac{1}{2\pi i} \int_{\gamma_s} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma_s} \frac{q_s}{(z - \beta_s)} dz + \frac{1}{2\pi i} \int_{\psi_s(z)} \frac{\psi'_s(z)}{\psi_s(z)} dz$$

$$= \frac{q_s}{2\pi i} \int_0^{2\pi} \frac{\rho i e^{i\theta}}{\rho e^{i\theta}} d\theta + 0$$

$$\therefore z - \beta_s = \rho e^{i\theta} \text{ on } \gamma_s$$

$$0 \le \theta \le 2\pi$$

$$\therefore \frac{1}{2\pi i} \int_{\gamma_s} \frac{f'(z)}{f(z)} dz = q_s \qquad \dots (iii)$$

Using Eqs. (ii) and (iii) in Eq. (i), we have

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = -\sum_{r=1}^n p_r + \sum_{s=1}^m q_s = N - P$$

where, $N = \sum_{s=1}^{m} q_s = \text{Number of zeroes and } P = \sum_{r=1}^{n} p_r = \text{Number of poles.}$