Chapter Five

THEOREMS BASED ON
RESIDUES AND
ARGUMENT PRINCIPLE

() Important Points from the Chapter

. If f(z) 1s analytic within and on a closed contour C except at a finite
number of poles, and has no zero on C, then

I ) dz=N —P

where, N is the number of zeroes and P the number of poles of f (=)
inside (.
A pole or zero of order n must be counted n times. (2009, 1993, 91)
- If g(z) is analytie function, regular inside and on a simple closed
contour C and if /() is also analytic inside and on C, (except for a finite
number of poleq} having zerces at 2,z,,...,z, and poles at
pl » Bos.ooy Ppy theﬂ
1 1@ g(Z)
; 2,) ~ ).
ik Try 4= 2 8- 1 G
{2011, {}4, 02, 1999, 95, 94, 92, 90)
. Rouche’s Theorem Let f(z) and g(z) be analytic inside and on a
simple closed curve C and let | g(2)!<|f(2)] on C. Then, f(z) and
f(z) + g(2) have the same number of zeroes inside C.
(2014, 09, 03, 1299, 97, 92)
. Fundamental Theorems of Algebra Every polynomial of degree n
has exactly n zeroes. (2013, 11, 08, 03, 01,.2000, 1998, 96, 93)

. Argument Principle If f(2)is meromorphic inside a closed contour C

and has no zero on C, then _[C };((z)) dz=N — P, where N is the
z

number of zeroes and P the numher of poles inside C, (a pole or zero of
order m must be counted m times)

m Note N — P = 51— Aq arg f(z), where A. denotes the variation in arg f{z)as z
T

moves once round C.
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ci)Very Short Answer Questions

@ 1. Using Rouche’s theorem, determine the number of zeroes of
the polynomial P(z)=2*° — 627 +32% +1in|z| <1

Sol. Here, P(z) =2 —~ 62" + 32° + 1

Let f(z)=-62", g(2)=2""+32° + 1

Then, P(2)=f(2)+ gz)

Consider the circle C defined by | 2] =1.

Then, f(z) and g(z) both are analytic within and upon C and
gl [2°+32 +1

I

62
<]zlm+3|z|3+1
" 6|z

+3(1)3+1 5
6 (1) "6 "

g

= <lor|gl<]|f]

On applying Rouche’s theorem, we get f(2) + g(2) - P(z) has the same
number of zeroes inside C as f(2) = 62

But f{ - has seven zeroes inside (.

Hence, () has seven zeroes inside .

@ 2. Apply Rouche’s theorem to determine the number of roots of
the equation z° 42°+ 22 -1=0, that lie inside the circle
z| =L

Sol. Consider the circle C defined by | 2| = 1.
Take f(z)=—42°, gz)= 2% + 2% -1

—_ 2@ |2+ =1 12 +|2P +1_18+12+1:§<1
’ f(2) —42 < 4]z 4-1° 4
or —?—r<10r1gl<[fl

Now, f and g are analytic functions withi and upon the contour C such
that| gl<|fl

On applying Rouche’s theorem, we find f + g=2°% —42° + 2% — 1 has the
same number of zeroes inside C as f(z), but f(2) = —42° has five zeroes all
located at the origin. It follows that f + g has 5 zeroes inside C.

Hence, the equation has 5 roots inside | z]=1.
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Q 3. For which Value of the real number of ‘@, the function
z"e" —” will have n zeroes inside|z | =1?
(2008, 05, 04, 01, 2000, 1997, 95, 94, 92, 90)
Sol. We have to find zeroces of
2" - =0 (1)
Let us take f(z) = 2"¢% and g{z) = -
On the unit circle,{z| =1, we have
[f@|=]2""|<e® and | g@)i=|-¢€ |=e
Now, f(z) and f(z) + g(z) will have of same number of zeroes inside
lz[=1, provided| g(z) | <| f(2) |land thus e<e% ie. a > L
Thus, if @ > 1, then f(2) and.f(z) + g(2) have same number of zerces inside
| z]=1. But f(2) = 2"¢” has n zeroes inside [z]| =
Hence, f(2) + g(2), i.e. 2"¢” — & has n zeroes inside the circle | z|=1
provided a > 1.

<§> Short Answer Questions

@ 1. If g(z) is analytic function, regular inside and on a simple

closed contour C and if f(z)is also analytic inside and on C,
(e.xcept for a finite number of poles) having zeroes at

%1s B +-, B, and poles at p, p,, ..., p,,, then prove that
f(z)g(z) S &
= dz = (z.)- 2. g(p,)
] S LRI

(2011, 04, 02, 1999, 95, 94, 92, 90)

Sol. letz= z, be a simple zero of f(2), so that the function f(z) can be
written as f (z) (z — z,) §(2), where ¢(z) being analytic inside and on C, in
the neighbourhood of z = z,, where ¢ (z,) # 0.

Taking logarithmic differentiation, we get
f ' (Z) - 1 ¢’ (g) . _ B
f@ '{(z—z,>}+{¢<z)} [ log f(2) = log (z—2,) + log (2]

where, ¢’ (2) is analytic at z = z, thus

f @) 2@ |, [e@ ¥ &)
{f()}g() {@—z,a}*{ @ }

Since, g(2) ¢’ (2)/§ (2) is analytic and regular at z = z, and {f* (2)/ £(2)} g(2)
has a simple pole at z = 2z, with residue g(z,), taking into account all the
zeroes of f(z) inside C, we have

£ _
i o e 5@ 2= 2 s
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Similarly, if z = p, is a simple pole of f(z), then we can write
f(2)=¢ 2/~ p,), ¢ (z) has no poles at z = p,, which gives

[ _ _{ 1 }+ {cbf (Z)} [ log f(2) = log (z — p,) + log $(2)]

f(Z) <~ Ps ¢ (Z)
/(@) 8@ ¢ (2) 82
{f( )}g( = {z—ps}+{ b @) }
where, Y& gk 2) 8 | 1s analytic and regular at z = p_.
¢ (2)
Thus, {j;(g)} £(2) has a simple pole at z = p; with residue —g(p,).

Taking into account all the poles of f(z), we have

@ 3
et {m}g(z)dz Z £

Now, combining both the results, we get

5;%1 '[C (f;'r(f))] g(z) dz= rg 8(z,) - Sg g(_Ps) Hence proved.

Q 2. State and prove Rouche’s theorem on zeroes of an. analytic
function. (1999)

Or State and prove Rouche’s theorem. (2014, 09)

Or If f(z) and g(z) are analytic within and on a simple closed
contour C, and if | g(z)]| <} f(z)| on C, then f(z) + g(z) have
same number of zeroes inside C. (2010, 67, 03, 1997, 92)

Sol. Statement Rouche’s Theorem Let f(2) and g(2) be analytic

mside and on a simple closed curve C and let| g(2) | <| f{z) |on C. Then,
f(2) and f(2) + g(z) have the same number of zeroes inside C.

Proof Since, | g(2) | <] f(2) |, therefore

?8 <lon C, where| f(z) | 20.

£(2)

(z

Also, | f@ + 8@ =1 f(@) ~{-g@} > fR)-1gR) 20 []gE<IfE)I]
- f(2) + g(z) # 0 and hence neither f(z) nor {f(2) + g(z)} has zero on C.

Lot oy = 8@ 2@
et F) f():w F@I=|£5

e F@)l<lonC

Otherwise, will be infinity and not less than 1.

<lonC
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If immediately follows that g(z) and f(2) are not zero on C, then we have

F(z)= ?Eionc ie.g=fF

g'=fF+ fF"

Let N, and N, be the number of zeroes of f(z) and f(z) + g(z) respectively
inside C, as these functions have no poles inside C.

By using the formula,

'@ w5
5 jc = dz=N =P
f @) f'+g
Wehave Nl——zﬂajc f(z) d ansz—zm_ -‘-C f+g dZ
N - f'+g f
N N1_2ﬂ£'[c f+gd 27;;'[3 d

1-f+fF+fF’dz_1 ¥

- e d
2niC [+ fF omic f °

_ 1. e ffA+ )+ fF dz—-—l—_jidz
2 ¢ fQl+ F) 2mi C f
_1_ f dz_|_ ._;.l..- -—-——PT——-—* dz—i. 'f': dz
2ni 7C f 2mC1+ F 2ni *C f

~ 1_ o dz
2m Cl+ F

Again, 1 + F #00n C, because | F(2)| <1 and F' (2) is analytic on C, since

F1s analytic on C. [ derivative on an analytic function is analytic].
N ) , _
Thus - is analytic on C, hence by Cauchy’s theorem, we have
+ .
Fr
dz=0
IC 1+ F

.w N2—N1=0:3N1:N2
which proves the theorem.

Q3. State and prove Fundamental theorem of algebra. (2008)

Or Prove that every polynomial of degree n has exactly n zeroes.
(2017, 13, 11, 06, 03, 01, 2000, 1998, 96, 93, 91)
Sol. Statement Let P(z) = ay + 0,2+ axz” +... + @,2" =0, where a,, #0
be a polynomial equation of degree n. |
Proof We will prove this by contradiction method. We suppose that the
result is not true, l.e. P(z) has no zero or P(2) =0 has no root.

Let fl2)= ﬁPY-)_

Since, P(z)has no zero, therefore f(2)is analytic everywhere in the domain.
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Now, we have f(z) =—1—= 12
P(z) Qo+ @Zz+ a2 +...+ a2z

o

1 H
= —0,asz—> w
Ztia a, Qg
'éﬁi+é£:'i‘+zn_2+...+an
Thus, for every ¢ > 0, there exists a § > (0, such that
I
| f@) =] =——1<sfor]lzl>8
f()' 2

Also, f(2)is continuous in the bounded domain| z| < §, therefore it is bound
in this domain.

Thus, there exists a number % such that| f(z) |<kforiz|< 8,
ie.| f(2)| < max (%, &) for every z.
Now, let max (%, £) = m, then

41
lf(z)l—'P(z)

Hence, by Liouville’s theorem, f(?) is constant, i.e. P(z) must be constant,
which is a contradiction as P(z) cannot be constant, when 7 > 1 and a =0, _
Therefore, P(z) must have a zero.

Hence, the polynomial P(z) has at least one zero or the polynomial
equation P(z) =0 has at least one root,

=£m,Vz

Q 4. If a> ¢, then prove by the help of Rouche’s theorem that the

equation e* = az" has n roots inside the circle |z |=1
(1997, 95, 94)

~ Sol. Let C denote the circle | 2] = 1 with centre at the origin and radius

unity.

The given equation is az" — ¢* = 0.

Take f(2) = 02", g(z) = — &°

It is evident that both f (2) and g(z) are analytic inside and on C.

8@ |_| =€ g | & | & : : s
Now, ) =l |= e “Ial-IZIR?alzln [since, @ is positive]
2
g
l+z2+ 5. +72 4 1, 2,1 3
_ 2! 31 _<1+|Zf+é—!~lz| +3!--Izl + ...
alzl - alzl®
1¢. I
:—d—(l+1+§—!+§1~!+...) _ [-1z]=1]
=< <1 [-a>e]
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~ [ 8@ | <] f(@)}on C. Thus, all the conditions of Rouche’s theorem are
satisfied, so f(2) + g(z) has the same number of zeroes inside C as f2).

But f(2) = az” has n zeroes, all located at the origin, consequently
az” — & has n zeroes inside C.

Hence, the equation ¢ = az" has # roots inside | 2 f=1.

@ 5. State and prove Fundamental theorem of Algebra. Find real
number a for which the function (2" e? — ¢° )will have n zeroes

inside|z |=1. (2008)
Sol. Part I See the solution of Q. 3.
Part II See the solution of Q. 3 of Very Short Answer Questions.

€ 6. State and prove Hurwitz’s theorem. (2017)

Sol. Statement Let 1. (2 be a sequence of analytic functions defined on
a domain D such that Z)#0,VzeD,n=1,2,8, ... Assume that f.(@)
converges uniformly to f(2) on every bounded and closed subset of D.
Then, the limit function is either identically zero or nowhere zero in D.
Proof Suppose f(2) is not identically zero in D, Then, we have to show
that f(z) is never zero in D. Assume the contrary to hold, i.e. f(z,) =0 for
some z, in D. Since, zeroes of an analytic function are isolated, therefore
there exist a deleted neighbourhood N 5(2g) of 25 in which the function is
non-zero. Therefore,

f@#£0,ze0<|z-2,1<6,6>0
In particular, f(z)1is non-zero on the circle.

C:0<lz—24/<8,,8 <3
Let e=Min{lf(@)|:2eC}
Since, C is bounded and closed, it follows by the given hypothesis that
f2(2) converges uniformly te f(z) on C. Hence, for above £ > 0, there exist
ng such that '

1.2~ f@h <&V n>n, ...(3)
Due to the definition of g note that

eL|f@lforzeC
Hence, on using Eq. (i), we have

[ fo@ - F@I < f@I,V n> n, for all points on C.
Now, Rouche’s theorem asserts that the functions f2
and {2 - f@}+ f@) = o)
have the same number of zeroes in C. But f(2) has a zero at 2,
So, £,(z) must also have a zero in C.

This contradicts the hypothesis, hence we conclude that f(2) can never be
zero n D (in case it is not identically zero).
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l L]
& Long Answer Questions |

@ 1. State Rouche’s theorem. Prove that all the roots of
7 -52% +12 =0 lie between the circles |z|=1 and

z]|=2. | (2014)

Or Prove that all the roots of 27 — 523 +12 = 0 lie between
circles|z| =1 and |z| = 2. (2018)

Sol. Part I Rouche’s Theorem Let f(z) and g(z) be analytic inside and

on a simple closed curve C and let| g(2) | <] f(z) |on C. Then, f{z) and
f(2) + g(2) have the same number of zeroes inside C.

Part II Let C; represents the circle | z{ =1 and C;, represents the circle
|z |=

Suppose that f(z) =12 and g{z) = 2’ — 52°.
We observe that both f(z) and g(z) are analytic within and on C;.

7 7
Now, we have £2) =] 2 52 :élzl +1-52"|
f(2) 12 12
_lzf +512F 1+5 1
12 12 2
Since, | z| =1 on C, therefore
‘?8 <1l=| g i< f@)|onC,

.. By Rouche’s theorem, f{z) + g(z) =2’ —52° + 12 has the same number
of zeroes inside C, as f(z) =12.

Since, f{z) = 12 has no zeroes inside C,, therefore f(2) + g(z) =2 -5 + 12
has no zero mmde C;.

Let F(z) = 2, & (2) = 12 — 52°, we observe that both F(z) and ¢ () are
analytic within and on C,, we have

¢ (2) _|12-—5z3|<12+|—523|
F(z) 2 A P
BB 93
S|]_2|.;.§:(iz| :12-&752 _ 52 . [Folzi=2]
2| 2 126

Thus,onC,, ¢ @) |1 <i F(2)}
Now, by Rouche’s theorem, F (2)and ¢ (2) =2’ —52° + 12 has the same
number of zeroes as F(z) =2 inside C,.

Since, F(z) = z' has all the seven zeroes inside the circle] z| =2, as they
are all located at the origin, therefore all the zeroes of 2’ —52° + 12 lie
nside the circle C,,.

Hence, all the roots of the equation z’ — 52° — 12 =0 lie between the circles
lzl=1land]z|=2



B.Se. {Third Year) : MATHEMATICS Paper 2 101

Q 2. If f(2) is analytic within and on a closed contour C
except at a finite number of poles and has no zero onC,

then J f(z) dz = N - P, where N is the number of
2ni *C f(z)

zeroes and P the number of poles of f(2) inside C. A pole

or zero of order n must be counted n times.
{2012, 09, 1998, 91)

Or State and prove argument principle.

Sol. Let f(z) be an analytic function within and on a simple closed contour
C except for a joint number of poles inside C. Suppose that f(z) =0 on C.

Let oy, ¢y,..., o, be the poles of order p,, ps,..., p, respectively and

B1,Bs,..., By, be the zeroes of order ¢, g, ..., @, respectively of f(z) lving
inside C,

Enclose each pole and zero by non-overlapping circles Cy, C,,...,C, and

Y1:T9s---» Ym €ach of radii p. This can always be done, since the poles and
zeroes are 1solated.

.. By extension of Cauehy’s theorem to multi- connected region, we have
J' f E%)_ L J’ f (z) J /' (z) I (1)
T C, f(z) ;-21 2m Y1 f(2)
Since, &, is a pole of order p, of f{(z), therefore we may write
flay = —2@
(z— o, )™
where ¢.(2) is analytic and non-zero at o,
log f(z) = log ¢.(2} — p, log (z-a,)
011 differentiating both the sides, we have
FE@)_0,@ P
f@ 66 2z-o

Since, ¢.(2) is analytic at a, therefore ¢', (2) and ¢¢r (( -)) are analytic.
z

2m

I V. @ (z)
G ¢,(Z)
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= (z) ¢’ (Z) Jo. dz
Now, - =L
B, e o) ¥ om Jc 5@ % om Je -
pr o= pid®de
=0-—
2mz pé®
z-o-.,_=pei%nc,.
0<8<2x
@, ¥
= 2o o 7 =)

Also, since B, is a zero of order g, of f(z), therefore we may write
f@=E-B)"y,(2
where, v (z) is analytic and non-zero at .
log f(2) = g, log (2 — B} + log v ,(2)
On differentiating both the sides, we get
f@__ e  v,.@
f(z) Z = Bs ws(z)

Since, v (2) is analytic at B..

Therefore, ', are analytic at ; and ¥ are analyticat ..

W (2)
[ ¥e® g g
Ts Y s(2)
Now, _ff(z)z lj‘ N I\if @ 4
2n 7% f(2) 2ni 1s (2 -B,) 2ni (z)
_ 4 = pid®
=5 Iﬂ v d8+0
Z_Bs:peigon}'s
D£0<L2x
f'@ .
o LS ) dz =g, ... (1i1)

Using Eqgs. (i) and (iii) in Eq. (i), we have

1 f@,
5o o 7@ ,le"JrZ% Wit

where, N = Z g, = Number of zeroes and P = 2 P, = Number of poles.

s=1 r=1



