Chapter Six

RIEMANN INTEGRATION

(b) Important Points from the Chapter

1. **Partition** A finite set $P = \{a = x_0, x_1, x_2, \dots, x_n = b\}$ of points is called a partition or subdivision of the closed interval [a, b], iff

$$a = x_0 < x_1 < x_2 < x_3 < \dots < x_n = b.$$

- 2. Refinement of a Partition A refinement P_2 of a partition P_1 of [a, b] is a partition of the same closed interval [a, b] such that $P_2 \subseteq P_1$.
- 3. **Darboux Sums** Let f be a bounded function defined on [a, b] and $P = \{a = x_0, x_1, x_2, \dots, x_n = b\}$ be a partition of [a, b].

Let
$$m_k = \text{glb} \{ f(x) : x \in [x_{k-1}, x_k] \}$$

and
$$M_k = \text{lub}\{f(x) : x \in [x_{k-1}, x_k]\}, \forall k = 1, 2, 3, ..., n.$$

Then, the two sums are
$$L(f, P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1})$$

and
$$U(f, P) = \sum_{k=1}^{n} M_k(x_k - x_{k-1})$$
, where $L(f, P)$ and $U(f, P)$ are called

lower and upper Darboux sums respectively of f for the partition P.

4. Lower Riemann-Integral The supremum of the set of all lower sums is called the lower Riemann-integral of f on [a, b] and there exist numbers m and M such that $m \le f(x) \le M$, $\forall x \in [a, b]$.

It is defined as $\int_a^b f(x) dx = \text{lub}\{L(f, P)\}.$

5. Riemann-Integral A function f bounded on [a, b] is said to be Riemann-integrable on [a, b], if its upper and lower integrals are equal,

i.e. R- integrable
$$\int_a^{\overline{b}} f(x) dx = \int_{\underline{a}}^b f(x) dx = \int_a^b f(x) dx$$
, it is denoted by $\int_a^b f(x) dx = \int_a^b f(x) dx$.

(2006, 05)

The function f is integrand where a, b are the limits of integration. The set of all Riemann-integrable function denoted by R[a, b].

6. Norm For a partition $P = \{a = x_0, x_1, x_2, \dots, x_n = b\}$ of [a, b], there are n-subintervals $[x_{k-1}, x_k]$ where $k = 1, 2, 3, \dots, n$. The length of the greatest subinterval is called the norm of the partition P and is denoted by ||P||.

7. Oscillatory Sum For a given bounded function $f:[a,b] \to R$ and a partition P of [a,b], $U(f,P)-L(f,P)=\sum_{k=1}^{n}(M_k-m_k)(x_k-x_{k-1})$ is

called the oscillatory sum and $(M_k - m_k)$ is called the oscillation of the function in the subinterval $[x_{k-1}, x_k]$.

8. **Darboux's Theorem** Given a bounded function $f:[a,b] \to R$, and a real number $\varepsilon > 0$, there exists a real $\delta > 0$ such that the relations

(i)
$$L(f, P) > \int_{\underline{a}}^{b} f(x) dx - \varepsilon$$
 (ii) $U(f, P) < \int_{\underline{a}}^{\overline{b}} f(x) dx + \varepsilon$

hold for every partition P of [a, b] for which $||P|| < \delta$.

ψ Very Short Answer Questions

Q 1. Prove that the lower Riemann integral cannot exceed the upper Riemann-integral. (2006)

Sol. Let us consider the interval [a, b] and P_1, P_2 be two partitions of [a, b].

Then, $L(f, P_1) \le U(f, P_2)$...(i)

fix P_2 and consider the lub $\{L(f, P_1)\}$ for all P_1 . Then,

$$\int_{a}^{b} f(x) \ dx \le U(f, P_2)$$

Taking glb $\{U(f, P_2)\}$ for all P_2 , then

$$\int_{\underline{a}}^{b} f(x) \ dx \le \int_{a}^{\overline{b}} f(x) \ dx$$

Thus, the lower Riemann-integral cannot exceed the upper Riemann-integral.

Hence proved.

Q 2. Prove that a constant function is R-integrable.

(2015, 1999, 97, 95)

Sol. Let us consider a constant function $f(x) = k, \forall x \in [a, b]$ is bounded over [a, b] and $P = \{a = x_0, x_1, x_2, \dots, x_{k-1}, x_k = b\}$ be the partition of [a, b].

Then, $M_k = \text{lub}\{f(x) : x \in [x_{k-1}, k_k]\} = k$

and $m_k = \text{glb}\{f(x): x \in [x_{k-1}, x_k]\} = k$

Therefore, $L(f, P) = \sum_{k=1}^{n} m_k \delta_k = k \sum_{k=1}^{n} \delta_k = k(b-a)$

and $U(f, P) = \sum_{k=1}^{n} M_k \delta_k = k \sum_{k=1}^{n} \delta_k = k(b-a)$

for every partition P of [a, b].

Thus, we have

$$\int_{a}^{\bar{b}} f = \text{glb of the set of all } U(f, P) = k(b - a)$$

and

$$\int_{\underline{a}}^{b} f = \text{lub of the set of all } L(f, P) = k(b - a)$$

Hence, a constant function is R-integrable over [a, b]

and

$$\int_a^b f = k(b-a).$$

Hence proved.

Q 3. Prove that every monotonic function is Riemann-integrable.

(2006)

Or If f is monotonic on [a, b], then show that f is Riemann-integrable on [a, b].

(2017)

Sol. Let f be a monotonic increasing function for a positive integer $\varepsilon > 0$ and partition P of [a, b] such that the length of each subintervals $[x_{k-1}, x_k], \forall k = 1, 2, ..., n$ is less than

$$\frac{\varepsilon}{f(b) - f(a)} \qquad \dots (i)$$

 $M_k = \text{lub of } f(x) \text{ in } (x_{k-1}, x_k) = f(x_k)$

and

$$m_k = \text{glb of } f(x) \text{ in } (x_{k-1}, x_k) = f(x_{k-1})$$

Now,
$$U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k) \delta_k$$

$$= \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) \frac{\varepsilon}{f(b) - f(a)}$$
 [from Eq. (i)]

$$< \sum_{k=1}^{n} \varepsilon < \varepsilon$$

Hence, f is R-integrable on [a, b].

If f be a monotonic decreasing function, then the proof is similar as above.

Q 4. If $f(x) = \begin{cases} 1, & \text{when } x \text{ is rational} \\ 0, & \text{when } x \text{ is irrational} \end{cases}$ then show that f(x) is not R-integrable. (2005)

Or Let f(x) be defined in [0, 1] as follows

 $f(x) = \begin{cases} 1, & \text{when } x \text{ is rational} \\ 0, & \text{when } x \text{ is irrational} \end{cases}$ Show that f is not

Riemann- integrable on [0, 1].

(2017)

Sol. Here, f(x) = 1, when x is rational and 0 when x is irrational

$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{n} M_{k} \delta_{k} = 1 \cdot (b - a) = (b - a) \qquad ...(i)$$

$$\int_{\underline{\alpha}}^{b} f(x) dx = \sum_{k=1}^{n} m_k \delta_k = 0 \cdot (b - \alpha) = 0 \qquad ...(ii)$$

From Eqs. (i) and (ii), we get

$$\int_{a}^{\overline{b}} f(x) \ dx \neq \int_{a}^{b} f(x) \ dx$$

Hence, f is not R-integrable.

- **Q 5.** Prove that the necessary and sufficient condition for R-integrability of a bounded function $f:[a,b] \to R$ on [a,b] is that $\forall \ \epsilon > 0$, there exists a partition P of [a,b] such that $U(P,f)-L(P,f) < \epsilon$. (2015, 14, 1998)
- **Sol.** If f is R-integrable on [a, b], then

$$\int_{\underline{a}}^{b} f = \int_{a}^{\overline{b}} f$$

By Darboux's theorem, for $\varepsilon > 0$, there is a partition P of [a, b] such that P and all its refinements

$$L(P, f) > \int_{\underline{a}}^{b} f - \frac{\varepsilon}{2}$$
 and $U(P, f) < \int_{a}^{\overline{b}} f + \frac{\varepsilon}{2}$

Then, $U(P, f) - L(P, f) < \varepsilon$.

Conversely, if for every $\varepsilon > 0$, there is a partition P such that $U(P,f) - L(P,f) < \varepsilon$, then

$$\int_{a}^{\overline{b}} f \leq U(P, f) < L(P, f) + \varepsilon < \int_{\underline{a}}^{b} f + \varepsilon$$

$$\int_{a}^{\overline{b}} f - \int_{\underline{a}}^{b} f < \varepsilon, \forall \varepsilon > 0 \Rightarrow \int_{a}^{\overline{b}} f \leq \int_{\underline{a}}^{b} f$$

$$\int_{a}^{b} f \leq \int_{a}^{\overline{b}} f \text{ and thus } \int_{a}^{\overline{b}} f = \int_{a}^{b} f$$

But

i.e.

Hence, f is R-integrable.

Hence proved.

Q 6. Evaluate $\int_0^a x^2 dx$ and show that $f \in R[0, a]$. (2014)

Sol. Let $P = \left\{ \frac{r\alpha}{n} : r = 0, 1, 2, ..., n \right\}$ be a partition of $[0, \alpha]$. Then,

$$m_k = \frac{(r-1)^2 a^2}{n^2}$$
, $M_k = \frac{r^2 a^2}{n^2}$ and $\delta_k = \frac{a}{n}$.

Therefore,

$$L(f, P) = \sum_{k=1}^{n} m_k \delta_k = \sum_{k=1}^{n} \frac{(r-1)^2 a^2}{n^2} \cdot \frac{a}{n}$$
$$= \frac{a^3}{n^3} \sum_{k=1}^{n} (r-1)^2 = \frac{a^3}{n^3} \left[\frac{n(n-1)(2n-1)}{6} \right]$$

$$= \frac{a^3}{6} \left[\left(1 - \frac{1}{n} \right) \left(2 - \frac{1}{n} \right) \right]$$
and
$$U(f, P) = \sum_{k=1}^{n} M_k \delta_k = \sum_{k=1}^{n} \frac{r^2 a^2}{n^2} \cdot \frac{a}{n}$$

$$= \frac{a^3}{n^3} \sum_{k=1}^{n} r^2 = \frac{a^3}{n^3} \frac{n(n+1)(2n+1)}{6} = \frac{a^3}{6} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right)$$

$$\therefore \qquad \int_{0}^{a} f = \lim_{\|P\| \to 0} L(f, P) = \lim_{n \to \infty} \frac{a^3}{6} \left(1 - \frac{1}{n} \right) \left(2 - \frac{1}{n} \right) = \frac{a^3}{3}$$
and
$$\int_{0}^{\overline{a}} f = \lim_{\|P\| \to 0} U(f, P) = \lim_{n \to \infty} \frac{a^3}{6} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right) = \frac{a^3}{3}$$
Thus,
$$\int_{0}^{a} f = \int_{0}^{\overline{a}} f$$

Therefore, $f \in R[0, a]$ and $\int_0^a f = \frac{a^3}{3}$.

Hence proved.

Q 7. A function f is defined on [0, 1] by

$$f(x) = \begin{cases} 2rx, & \text{where } \frac{1}{r+1} \le x \le \frac{1}{r}, \ \forall r = 1, 2, \dots, \\ 0, & \text{otherwise} \end{cases}$$

Prove that $f \in R[0,1]$ and evaluate $\int_0^1 f(x) dx$. (2013)

Sol. Since,
$$f\left(\frac{1}{r}-0\right) = \lim_{h \to 0} 2r\left(\frac{1}{r}-h\right) = 2$$
 and
$$f\left(\frac{1}{r}+0\right) = \lim_{h \to 0} 2(r-1)\left(\frac{1}{r}+h\right) = 2 - \frac{2}{r}$$

 \therefore f is discontinuous at $x = \frac{1}{r}$, where r = 2, 3, ...

However, f(1) = 2 and $f(1-0) = \lim_{h\to 0} 2(1-h) = 2$, which shows that f is continuous at x = 1.

Since, the set $\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ of points of discontinuity of f has only one

limiting point viz. 0.

Hence,
$$f \in R$$
 [0, 1].
Now, $\int_{1/n+1}^{1} f(x) dx = \int_{1/2}^{1} f + \int_{1/3}^{1/2} f + \int_{1/4}^{1/3} f + \dots + \int_{1/(n+1)}^{1/n} f$

$$= \sum_{r=1}^{n} \int_{1/(r+1)}^{1/r} f$$

and
$$\int_{\mathcal{V}(r+1)}^{\mathcal{V}(r)} f(x) \, dx = \int_{\mathcal{V}(r+1)}^{\mathcal{V}(r)} 2rx \, dx = r \left[\frac{1}{r^2} - \frac{1}{(r+1)^2} \right]$$

$$\text{yield } \int_{\mathcal{V}(n+1)}^{1} f(x) \, dx = 1 \cdot \left(\frac{1}{1^2} - \frac{1}{2^2} \right) + 2 \left(\frac{1}{2^2} - \frac{1}{3^2} \right) + 3 \left(\frac{1}{3^2} - \frac{1}{4^2} \right)$$

$$+ \dots + n \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right)$$

$$= \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} - \frac{n}{(n+1)^2}$$

$$= \left(\sum_{r=1}^n \frac{1}{r^2} \right) - \frac{n}{(n+1)^2} = \left(\sum_{r=1}^n \frac{1}{r^2} \right) - \frac{1/n}{(1+1/n)^2}$$

Therefore, as $n \to \infty$,

$$\int_0^1 f(x) \ dx = \left(\sum_{r=1}^\infty \frac{1}{r^2}\right) - 0 = \frac{\pi^2}{6}$$

Q 8. Show that $f(x) = x^3$ is R-integrable in [0, a]. Also, find the value of integral. (2012, 1998)

Sol. Let $f(x) = x^3$, $\forall x \in [0, a]$ is continuous on [0, a].

Further, if $F(x) = \frac{x^4}{4}$ for $x \in [0, a]$

Then,

$$F'(x) = x^3 = f(x) \text{ for } x \in [0, \alpha]$$

Hence, by the fundamental theorem of integral calculus,

$$\int_0^a x^3 dx = F(a) - F(0) = \frac{a^4}{4} - 0 = \frac{a^4}{4}$$

If $P = \{0 = x_0, x_1, x_2, \dots, x_n = a\}$ be the partition of [0, a] into n congruent subintervals, then $\delta_k = \frac{a-0}{n} = \frac{a}{n}$

Since, f is increasing on [0, a].

Then, $m_k = \text{glb} \{ f(x) : x \in [x_{k-1}, x_k] \} = x_{k-1}^3$ and $M_k = \text{lub} \{ f(x) : x \in [x_{k-1}, x_k] \} = x_k^3$

$$L(f, P) = \sum_{k=1}^{n} m_k \delta_k = \sum_{k=1}^{n} (x_{k-1}^3 \cdot \delta_k)$$

$$= \left(0^3 + \frac{a^3}{n^3} + \frac{2^3 a^3}{n^3} + \frac{3^3 a^3}{n^3} + \dots + \frac{(n-1)^3 a^3}{n^3}\right) \frac{a}{n}$$

$$= \frac{a^4}{n^4} (1^3 + 2^3 + 3^3 + \dots + (n-1)^3)$$

$$= \frac{a^4}{n^4} \left(\frac{(n-1)n}{2} \right)^2 = \frac{a^4}{4} \cdot \left(1 - \frac{1}{n} \right)^2$$
and
$$U(f, P) = \sum_{k=1}^n M_k \delta_k = \sum_{k=1}^n (x_k^3 \delta_k)$$

$$= \left(\frac{a^3}{n^3} + \frac{2^3 a^3}{n^3} + \frac{3^3 a^3}{n^3} + \dots + \frac{n^3 a^3}{n^3} \right) \frac{a}{n}$$

$$= \frac{a^4}{n^4} (1^3 + 2^3 + 3^3 + \dots + n^3)$$

$$= \frac{a^4}{n^4} \left(\frac{n(n+1)}{2} \right)^2 = \frac{a^4}{4} \left(1 + \frac{1}{n} \right)^2$$
Now,
$$\int_{0}^a f = \text{lub of the set of all } L(f, P)$$

$$= \text{lub} \left[\frac{a^4}{4} \left(1 - \frac{1}{n} \right)^2 \right] = \frac{a^4}{4}, \text{ as } ||P|| \to 0 \text{ or } n \to \infty$$
and
$$\int_0^{\overline{a}} f = \text{glb of the set of all } U(f, P)$$

$$= \text{glb} \left[\frac{a^4}{4} \left(1 + \frac{1}{n} \right)^2 \right]$$

$$= \frac{a^4}{4} \text{ as } ||P|| \to 0 \text{ or } n \to \infty$$

Consequently, $\int_0^a f = \int_0^{\overline{a}} f$

Hence, f is R-integrable and $\int_0^a f = \frac{a^4}{4}$.

Hence proved.

Q 9. If f(x) = x, $\forall x \in [0, 1]$, then show that f is R-integrable on [0, 1], and $\int_0^1 f(x) dx = \frac{1}{2}$.

Sol. Let $P = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{r-1}{n}, \frac{r}{n}, \dots, \frac{n}{n} = 1\right\}$ be the partition of [0, 1].

Then, $m_r = \frac{r-1}{n}$, $M_r = \frac{r}{n}$ and $\delta_r = \frac{1}{n}$ for r = 1, 2, ..., n

Therefore,
$$L(f, P) = \sum_{r=1}^{n} m_r \, \delta_r = \sum_{r=1}^{n} \frac{r-1}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \sum_{r=1}^{n} (r-1)$$

$$= \frac{1}{n^2} [1 + 2 + 3 + \dots + (n-1)]$$

$$= \frac{1}{n^2} \frac{(n-1)n}{2} = \frac{n-1}{2n}$$

$$= \left(\frac{1}{2} - \frac{1}{2n}\right) = \frac{1}{2}\left(1 - \frac{1}{n}\right)$$
and
$$U(f, P) = \sum_{r=1}^{n} M_r \, \delta_r = \sum_{r=1}^{n} \frac{r}{n} \cdot \frac{1}{n}$$

$$= \frac{1}{n^2} \sum_{r=1}^{n} r = \frac{1}{n^2} (1 + 2 + 3 + \dots + n)$$

$$= \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{(n+1)}{2n} = \frac{1}{2} \left(1 + \frac{1}{n}\right)$$
Therefore,
$$\int_{0}^{1} x \, dx = \lim_{\|P\| \to 0} L(f, P) = \lim_{n \to \infty} \frac{1}{2} \left(1 - \frac{1}{n}\right) = \frac{1}{2}$$
and
$$\int_{0}^{1} x \, dx = \lim_{\|P\| \to 0} U(f, P) = \lim_{n \to \infty} \frac{1}{2} \left(1 + \frac{1}{n}\right) = \frac{1}{2}$$

$$\therefore \int_{0}^{1} f(x) \, dx = \int_{0}^{1} f(x) \, dx$$

Hence, f(x) is R-integrable and the value of $\int_0^1 f(x) dx = \frac{1}{2}$, $\forall x \in [0, 1]$.

Q 10. Calculate the value of upper and lower integrals for the function f defined on [0, 2] as follows.

$$f(x) = \begin{cases} x + x^2, \text{ when } x \text{ is rational} \\ x^2 + x^3, \text{ when } x \text{ is irrational} \end{cases}$$
 (1996)

Sol. We have,
$$(x + x^2) - (x^2 + x^3) = x - x^3 = x(1 - x^2)$$

Thus, $x + x^2 > x^2 + x^3$ in $(0, 1)$ and $x + x^2 < x^2 + x^3$ in $(1, 2)$

Now, for every k with usual notations,

$$m_k = x^2 + x^3, \forall x \in (0, 1) = x + x^2, \forall x \in (1, 2)$$
and
$$M_k = x + x^2, \forall x \in (0, 1) = x^2 + x^3, \forall x \in (1, 2)$$
Hence,
$$\int_0^2 f(x) dx = \int_0^1 (x^2 + x^3) dx + \int_1^2 (x + x^2) dx$$

$$= \left[\frac{x^3}{3} + \frac{x^4}{4}\right]^1 + \left[\frac{x^2}{2} + \frac{x^3}{3}\right]^2$$

$$= \left[\frac{x}{3} + \frac{x}{4} \right]_0 + \left[\frac{x}{2} + \frac{x}{3} \right]_1$$

$$= \left[\left(\frac{1}{3} + \frac{1}{4} \right) - (0+0) \right] + \left[\left(\frac{4}{2} + \frac{8}{3} \right) - \left(\frac{1}{2} + \frac{1}{3} \right) \right] = \frac{53}{12} = 4\frac{5}{12}$$

Also,
$$\int_{0}^{2} (f)x \, dx = \int_{0}^{1} (x + x^{2}) \, dx + \int_{1}^{2} (x^{2} + x^{3}) \, dx$$
$$= \left[\frac{x^{2}}{2} + \frac{x^{3}}{3} \right]_{0}^{1} + \left[\frac{x^{3}}{3} + \frac{x^{4}}{4} \right]_{1}^{2} = \left[\left(\frac{1}{2} + \frac{1}{3} \right) - (0 + 0) \right] + \left[\left(\frac{8}{3} + \frac{16}{4} \right) - \left(\frac{1}{3} + \frac{1}{4} \right) \right]$$

1

Q 11. Prove that a continuous function is Riemann-integrable on [a, b]. (2013, 10, 09, 07)

Sol. Let us consider a function f(x) is continuous on [a, b] is bounded in [a, b], and $P = \{a = x_0, x_1, x_2, \dots, x_{k-1}, x_k = b\}$ is the partition of [a, b]. $[x_{k-1}, x_k]$ is a subinterval, where $k = 1, 2, \dots$

Suppose that the oscillation of f(x) in each of such intervals is less than $\frac{\varepsilon}{b-a}$, for $\varepsilon > 0$ and small.

Now,
$$U(f, P) = \sum_{k=1}^{n} M_k \delta_k L(f, P) = \sum_{k=1}^{n} m_k \delta_k$$

and $U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k) \delta_k$

$$\leq \frac{\varepsilon}{(b-a)} \sum_{k=1}^{n} \delta_k$$

$$\leq \frac{\varepsilon}{(b-a)} (b-a)$$

Therefore, the function f(x) is R-integrable.

Hence proved.

Q 12. State and prove Fundamental theorem of integral calculus. (2005)

Sol. Statement Let f be a continuous function on [a, b] and let ϕ be a differentiable function on [a, b] such that $\phi'(x) = f(x), \forall a \le x \le b$. Then, $\int_a^b f(t) dt = \phi(b) - \phi(a)$.

Proof Since, f is continuous on [a, b], then the integral function F of f defined by

$$F(x) = \int_a^x f(t) dt, x \in [a, b]$$

is differentiable and

$$F'(x) = f(x) x \in [a, b]$$
 ...(i)

But we have $\phi'(x) = f(x), x \in [a, b]$...(ii)

From Eqs. (i) and (ii), we get

$$F'(x) = \phi'(x), \forall x \in [a, b]$$

$$F'(x) - \phi'(x) = 0, \forall x \in [a, b]$$

$$\Rightarrow \frac{d}{dx} [F(x) - \phi(x)] = 0, \forall x \in [a, b]$$

$$\Rightarrow$$
 $F(x) - \phi(x) = C$, where C is constant.

$$\Rightarrow F(x) = \phi(x) + C$$

$$\therefore F(a) = \phi(a) + C \text{ and } F(b) = \phi(b) + C$$

$$\Rightarrow F(b) - F(a) = \phi(b) - \phi(a) \qquad ...(iii)$$
But
$$F(b) = \int_a^b f(t) dt$$

and

$$F(a) = \int_a^b f(t) \ dt = 0$$

$$F(b) - F(a) = \int_a^b f(t) dt - 0 = \int_a^b f(t) dt \qquad \dots \text{(iv)}$$

From Eqs. (iii) and (iv), we get

$$\int_{a}^{b} f(t) \ dt = \phi(b) - \phi(a)$$

Hence proved.

Q 13. If f is R-integrable on [a, b] and $c \in (a, b)$, then prove that f is R-integrable on both [a, c] and [c, b] and $\int_a^b f = \int_a^c f + \int_c^b f$.

(2015, 1998)

Sol. f is bounded on [a, c] and [c, b] iff f is bounded on [a, b]. Suppose $f \in R[a, b]$. Then, for a real number $\varepsilon > 0$, there exists a partition P of [a, b] such that

$$U(f,P)-L(f,P)<\varepsilon$$

Let $P * = P \cup \{c\}$ be a refinement of P, then

$$U(f,P^*)-L(f,P^*)\leq U(f,P)-L(f,P)<\varepsilon$$

Let us divide partition P * of [a, b] into P_1 of [a, c] and P_2 of [c, b].

Then,
$$U(f, P^*) - L(f, P^*) = \{U(f, P_1) + U(f, P_2)\} - \{L(f, P_1) + L(f, P_2)\}$$

= $\{U(f, P_1) - L(f, P_1)\} + \{U(f, P_2) - L(f, P_2)\}$
< ϵ

Since, $U(f, P_1) - L(f, P_1) \ge 0$ and $U(f, P_2) - L(f, P_2) \ge 0$. Also, each of these ε .

Therefore, $f \in R[a, c]$ and $f \in R[c, b]$

Since,
$$U(f, P_1) + U(f, P_2) = U(f, P^*)$$

:. glb
$$[U(f, P_1)]$$
 + glb $[U(f, P_2)]$ = glb $[U(f, P^*)]$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Conversely, if $f \in R$ [a, c] and $f \in R$ [c, b], the partition P_1 on [a, c] and partition P_2 on [c, b] are such that

$$U(f, P_1) - L(f, P_1) < \varepsilon/2, U(f, P_2) - L(f, P_2) < \varepsilon/2$$

Let $P = P_1 \cup P_2$, then P is a partition on [a, b] and

$$\begin{split} U(f,P) - L(f,P) &= \{U(f,P_1) + U(f,P_2)\} - \{L(f,P_1) + L(f,P_2)\} \\ &= \{U(f,P_1) - L(f,P_1)\} - \{U(f,P_2) - L(f,P_2)\} < \varepsilon \end{split}$$

Hence, f is R-integrable on [a, b]

Hence proved.

Short Answer Questions

Q1. If $f:[a,b] \to R$ is continuous on [a,b] and $F(x) = \int_{a}^{x} f(t) dt$, then prove that F(x) always possess a derivative F'(x) and moreover F' = f on [a, b]. (2015, 05)

Sol. Let x, $(x + h) \in [a, b]$. Then,

$$F(x+h) - F(x) = \int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt = \int_{a}^{x+h} f(t) dt + \int_{x}^{a} f(t) dt$$

$$F(x+h) - F(x) = \int_{x}^{x+h} f(t) dt \qquad ...(i)$$

But f is a continuous function, so $\int_{x}^{x+h} f(t) dt = hf(c)$...(ii)

where, $c \in [x, x+h] \subseteq [a, b]$.

From Eqs. (i) and (ii), we get

$$F(x+h) - F(x) = hf(c)$$

$$\therefore \lim_{h\to 0} \frac{F(x+h)-F(x)}{h} = \lim_{h\to 0} f(c) = \lim_{c\to x} f(c) \qquad [\because \text{if } h\to 0, \text{ then } c\to x]$$

Hence, F'(x) = f(x)

[:: f is continuous] Hence proved.

■ Note Since, derivability ⇒ continuity, the integral function, F is continuous on [a, b].

Q 2. Let f be defined on [a, b] such that

 $f(x) = \begin{cases} 1, & \text{where } x \text{ is a rational number} \\ 3/2, & \text{where } x \text{ is a irrational number} \end{cases}$

Show that f is not Riemann-integrable on [a, b]. (2008)

Sol. Let the subinterval (x_{k-1}, x_k) , $\forall k = 1, 2, 3, ..., n$ for any partition P of [a, b] contains both rational and irrational numbers.

Hence, in each subintervals (x_{k-1}, x_k) , the upper bound $M_k = \frac{3}{2}$ and the lower bound $m_b = 1$.

Then,
$$\int_{a}^{b} f(x) dx = \text{glb} \{U(f, P) = \text{glb}\} \left\{ \sum_{k=1}^{n} M_{k} \delta_{k} = \text{glb} \left\{ \sum_{k=1}^{n} \frac{3}{2} \delta_{k} \right\} = \frac{3}{2} (b - a) \right\}$$

and
$$\int_{\underline{a}}^{b} f(x) \ dx = \operatorname{lub} \left\{ L(f, P) \right\} = \operatorname{lub} \left\{ \sum_{k=1}^{n} m_{k} \delta_{k} \right\} = \operatorname{lub} \left\{ \sum_{k=1}^{n} 1 \cdot \delta_{k} \right\} = (b - a)$$

$$\therefore \qquad \int_{a}^{\overline{b}} f(x) \ dx \neq \int_{\underline{a}}^{b} f(x) \ dx$$

Hence, f(x) is not R-integrable on [a, b].

Hence proved.

Q 3. Prove that a necessary and sufficient condition for Riemann-integrability of a bounded function $f:[a,b] \to R$ on [a,b] is that $\forall \ \epsilon > 0$, there exists a partition P of [a,b] such that $U(P,f)-L(P,f)<\epsilon$. Also, prove that every continuous function is R-integrable on [a,b].

Sol. Part I See the solution of Q. 5. of Very Short Answer Questions.

Part II See the Q. 11 of Very Short Answer Questions.

Long Answer Questions

Q 1. Show that the mean value of a continuous function in an interval belong to the range of the function, also evaluates $\int_0^a x^2 dx$ by Riemann-integration. (2016)

Sol. Part I Since, f(x) is continuous on [a, b], therefore $f \in R[a, b]$.

Let M and m be the bounds of f on [a, b] and

let m = f(y), $\forall y \in [a, b]$ and M = f(z), $\forall z \in [a, b]$.

Then, $m \le f(x) \le M$, $\forall x \in [a, b]$

Also,
$$(b-a) f(y) = \int_a^b f(x) dx \le (b-a) f(z)$$

Now, we consider the following cases

Case I If
$$(b-a) f(y) = \int_a^b f(x) dx$$

Then, there exists $c \in [a, b]$ such that $\int_a^b f(x) dx = (b - a) f(c)$

Case II If
$$\int_a^b f(x) dx = (b-a)f(z)$$

Then, there exists $c \in [a, b]$ such that $\int_a^b f(x) dx = (b - a) f(c)$

Case III If
$$(b-a) f(y) < \int_{a}^{b} f(x) dx < (b-a) f(z)$$

i.e.
$$f(y) < \frac{1}{b-a} \int_{a}^{b} f(x) dx < f(z)$$

Let
$$\lambda = \frac{1}{(b-a)} \int_a^b f(x) \ dx$$

Then, $f(y) < \lambda < f(z)$ and hence by intermediate value theorem, there exists a point $c \in [y, z] \subseteq [a, b]$ such that $f(x) = \lambda$.

Part II See the solution of Q. 6 of Verty Short Answer Questions.

Q 2. Show that the function

$$f(x) = \begin{cases} 1/2^n, & \text{where } 1/2^{n+1} < x < 1/2^n \\ 0, & \text{where } x = 0 \end{cases}$$
 is

R-integrable and also prove that $\int_0^1 f(x) dx = \frac{2}{3}$.

Sol. Given function is

and f(0) = 0 at x = 0

Hence, $|f(x)| \le 1, \forall x \in [0, 1]$

Thus, f(x) is bounded on [0, 1] with sup (f(x)) = 1 and inf (f(x)) = 0.

Here,
$$f\left(\frac{1}{2^n}\right) = \frac{1}{2^n}$$
 and $f(x) = \frac{1}{2^n}$, $\forall x \in \left[\frac{1}{2^{n+1}}, \frac{1}{2^n}\right]$

$$\therefore \int \left(\frac{1}{2^n} - 0\right) dx = \frac{1}{2^n} = f\left(\frac{1}{2^n}\right)$$

So, f(x) is continuous at $x = \frac{1}{2^n}$ on the left hand side.

Moreover,
$$f(x) = \frac{1}{2^{n-1}}$$
, $\forall x \in \left[\frac{1}{2^n}, \frac{1}{2^{n-1}}\right]$

$$\therefore \qquad f\left(\frac{1}{2^n} + 0\right) = \frac{1}{2^{n-1}} \neq f\left(\frac{1}{2^n}\right) = \frac{1}{2^n}$$

So, f(x) is discontinuous at $x = \frac{1}{2^n}$ on the right hand side.

Thus, f(x) is discontinuous at $x = \frac{1}{2^n}$.

.. The set of discontinuous points of f(x) is $\left\{1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^n}, \ldots\right\}$, which is a infinite set with 0 limit point.

Hence, f(x) is R-integrable.

Now,
$$\sum_{n=0}^{\infty} \int_{1/2^{n-1}}^{1/2^n} f(x) dx = \int_{1/2}^{1} f(x) dx + \int_{1/2}^{1/2} f(x) dx + \dots + \int_{1/2^{n+1}}^{1/2^n} f(x) dx + \dots$$

$$= \lim_{r \to \infty} \int_{1/2^{n+1}}^{1} f(x) dx = \int_{0}^{1} f(x) dx$$
Thus,
$$\int_{0}^{1} f(x) dx = \sum_{n=0}^{\infty} \int_{1/2^{n+1}}^{1/2^n} f(x) dx = \sum_{n=0}^{\infty} \int_{1/2^{n+1}}^{1/2^n} \frac{1}{2^n} dx$$

$$= \sum_{n=0}^{\infty} \frac{1}{2^n} \left(\frac{1}{2^n} - \frac{1}{2^{n+1}} \right) dx = 1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots$$

$$= \frac{1}{1 - \left(-\frac{1}{2} \right)} = \frac{1}{1 + \frac{1}{2}} = \frac{1}{3/2} = \frac{2}{3}$$