Chapter Seven

CENTRAL ORBITS

() Important Points from the Chapter

. Central Force A force whose line of action always passes through a
fixed point is called a central force. The fixed point is called as the
centre of force, (2018, 15, 13)

. Central Orbit A central orbit is the path described by a particle
moving under the action of central force. The motion of a planet about
the Sun is an important example of a central orbit.

. Differential Equation of a Central Orbit A particle moves in a
plane with an acceleration which is always directed towards a fixed
point O in the plane; then the differential equation of central orbit.

d?u F '

i) In polar form — + yu=——
®Inp d9? BEu®

1 . )
where, u = —, F 1s central acceleration of
r

moving particle, h = —1§ gg and P(r,0) be O
74
the position of a moving particle at any o

time £
(2015, 12, 09, 06, 05, 04, 02, 1996, 93, 91)
2

(i) In pedal form F = % -3—*‘3, where p is the length of perpendicular

p dr
form the origin (pole) to the tangent at P(r, 8). (2009, 08, 03, 01)

. Sectorial Area The area traced out by the radius vector to the centre
of force is called sectorial area.

. Aerial Velocity When a particle moves in a plane, the rate of
description of sectorial area is called the aerial velocity of the particle
about the fixed point.

. Rate of Description of Sectorial Area The aerial velocity of the
particle about the fixed point O is called the rate of description of
sectorial area. Its value is contant and is equal to A /2, i.e.

(i) sectorial area described by the particle increases uniformly.



92

10.

11

12,

13.

14.

(i) v e i, ie. the lnear velocity at P varies inversely as the
D

perpendicular from the fixed point upon the tangent to the path.

. Linear Velocity at any Point of the Path of a Central Orbit The

linear velocity at any point of the path of a central orbit is

a=rifurs (2]

. Apse An apse is a point on the central orbit at which the radius vector

from the centre of force to the point has a maximum or minium value.,
(2017, 14)

. Apsidal Distance The length of the radius vector at an apse is called

an apsidal distance. 2017)

Apsidal Angle The angle between two consecutive apsidal distances
is called an apsidal angle.

At an apse the radius vector ig perpendicular to the tangent, p=r.

Velocity in a Cirele If v be the velocity of a particle in a circle at a
distance r = @ from the centre at right angle to the radius vector r, then

v® = af (@) where F = f(a).

Velocity from Infinity If a particle is falling from infinity to r=g
under an attractive force F towards the centre of force then acquired
velocity in falling from infinity to r = ¢ is the velocity from infinity,

thus v2=—-2 j ;‘ F(rdr.

Velocity of Fall to the Point of Projection If the particle falls from
the centre of repulsion under a force ¥ to a point at a distance r from

the centre, then v® =2 j; f() dr.

Time in a path The time ¢ of passing from P to another point @ of a

b
central orbit (path) is given by ¢ = }1; j r® de.
a
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(E)Very Short Answer Questions

@ 1. Write down the equation of central orbit in pedal form. (2016)

2
Sol. The differential equation of central orbit in pedal form is F = h—3 %2’
p’ dr
where I” is an acceleration towards a fixed point O, p is the length of
perpendicular from the origin (pole) to the tangent at P(r,0) and £ is any

constant equal to 2 —
FA

@ 2. Prove that the rate of description of sectional area in a
central orbit is constant. (2013)

Sol. Take the centre of force O as the pole and OX as the initial line. Let
P (r,0) and Q (r + 67,6 + 50) be the positions of a particle moving in a
central orbit at times ¢ and (¢ + 8¢), respectively.

Q {r+5; 6+89)

* Sectional area OPQ described by the particle in time ¢
| = Area of the AOPQ .

[ point @ is very closed to P and ultimately
we have to take limit as @ — P]
=2 OP-OQsinz_'POQ:% r (r+ sr) sin 80

. Rate of deseription of the sectorial area "
. Sectorial area OPQ
= lim
§—0 &t

% r(r + or)sind6

= bm
5t—0 of

= lim = rar+or). S000 00 1 2db A
5t0 2

58 ot 2 di 2

Hence, the rate of description of the sectorial area is constant and equal
to Ak /2. ' Hence proved.
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'@ 8. Write down the equaton of the ceza. orbit in polaf form.
Sol. If aparticle P(r.8:: i

-~ =-3 2 l3m= %21 in zxveleration F which
is directed towards a fixel prim: (s inois )

i {sim 1m% r.aine _==n. the differential
: . . By
equation of its path is

L s W=
it

-
a B

@ 4. Find the time ¢ of a particle P in a path, passing from one
point P to another point.

Sol. The time of passing from one point P to another point @ of a central
orbit (path) is obtained from the relation

rzig—zh:\;rzd{i):hdt

On integrating between the proper imits, we get

hz:f’ rzdﬂzbt:%_[b 2 4o
1 a

(i) Short Answer Questions

Q@ 1. Show that the rate of description of sectorial area in a central
orbit is constant and velocity varies inversely as the
perpendicular from centre to the tangent. (2018, 16)

Sol. Part I See the solution of Q. 2 of Very Short Answer Questions.
Part II For a central orbit, r? g9 =h

r ~—~—-=h=>r2£@-v=h
ds dt d

. (1)
s

But from the differential calculus, we know that r

@Y _sin ¢, where ¢ is
ds
the angle between the radius vector and tangent.

rzfl-e-:rsincp:p
s

where, pis length of the perpendicular drawn from the pole O on the
tangent at P.

On putting r? (‘f—] = pin Eq. (1}, we get
8 .

vp:h::’vzf?i
P

; 1
U oc =
P

1.e. the linear velocity at P varies inversely as the perpendicular from the
fixed point upon the tangent to the path.
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Q 2. A particle moves with a central acceleration which varies
inversely as cube of the distance. If it be projected from apse
at a distance a from the origin with a velocity +/2 times the the
velocity for a circle of radius a, show that its path is

recos (8/V2)=a. (2016, 14, 12, 06, 02, 1992)

Sol. Here, the centra.l acceleratlon varies inversely as the cube of the
distance, i.e. F =n/r® =y °, where  is a constant.

If V is the velocity for a circle of radius a, then

2
LAy —

= V=4u/a%
.. Velocity of the projection, v, =2V = /(2u/a?)
The differential equation of the path 18

[ d%]l F u
Rl u+ -
l_u d82J u2 u? = .

On multiplying both the sides by 2 [—3%) and then integrating, we have

r 7] |
v? = p? [u + (dﬁ] J =uu’+ A [where, A is a constant.] ...(1)

1l du

But initially, whenr=q, i.e. u ==, 2o =0 (at an apse)
- a

and v=1)1=1f-(2].1.:.’a2)

From Eq. (1), we have
g‘_*-_‘-_ - hzr 1 ~|_ 4

PO el Pt
h2=2uandA=%

On putting the values of A% and A in Eq. (i), we have

r 2] |
2ulu2+(%) J=P~u2+ -52-

du \/7 do o du
= =
; */— v (1 a’u?)

On i1ntegrating, we get

% + B=gin"'(qu), where Bis a constant.
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But initially, when u =1/a,6 <0
el L
2

Hence, ®/+2) + 1ﬂ: =sin" (au) = au = < =sin {E ” [i_)}
’ 2 r 2 \\2

= @ =rcos (%} which is the required equation of path.

Q@ 3. Find the law of force towards the pole, under which the curve
2a

r = ———— can be described. - (2014, 02)
1+cos@
Sol. The equation of the curve is r = —2-9——.
1+ cos®
On replacing r by -1—, we get
u
1 2a 1+ cos@
u 1+ cos 2a
On differentiating w.r.t. 0, we get
du 1 . du sin®
——=—{—sinf) = = -
do 2a de 2a

On differentiating again w.r.t. 0, we get
d*u cos®©

d0? 2a

du 1+cos® cos® 1
= + = - = e

de® 2a 2¢ 2a
But differential equation of the path is

2 2
F=p? uzru+d—§]=h2 uz-—1~=£—--1§
[ de J 2a 2a r
Thus, Fo—
r

L.e. force varies inversely as second power of the distance from the pole.

Q 4. Find the law of force towards the pole under which the
curve r" = a" cos n can be described. (2013, 06, 05, 03)

Sol, Given equation of the curve is 7* = a” cos n.
: . 1
On replacing r by —, we get
- u

i
—= a” cosn® = a™u" =secnd
)

On taking log both the sides, we get
- nloga+ n logu = logsecnd
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" On differentiating w.r.t. 0, we get

Eﬂ: X nsecnd-tan 1o .
u© d0 secn®
=% —‘EZE = wtan no
20
On differentiating again w.r.t. 6, we get,
2
d—% =usec’ nB-n + tan nd aa
do do

= nu sec® nO + tan n@- u tan no
= nu sec® n® + u tan®no
The differential equation of the central orbit is
2 o [ dy |
F=h*ulu+—
[ 07
F=h?u?u+ nusec®n® + utan’ no]
=h* u® [sec® nd + n-sec® n]
=h*u® L+ n)sec?nO="h% (1 + n) u® (@" u™)?

h%a®™ (1 + n)
— B2 .2 243 _
=h*a” - (l+n)u = s

1
r2n+3

I oc

1.e. the force varies im;ersely as the @n + 3)th power of the distance from
the pole.

@ 5. Aparticle describes the equiangular spiral r = ae®** under a
force to the pole. Find the law of force. (2007)
Sol. Given equation of the curve is r = qe® 2

=3 T ¢ dioote l#put Fi= 1] ...(i)
a I_ uJ
On differentiating w.r.t. 8, we get
.| cota €2 = _ 4 cota
do a
2
and ' d—z:—cota'@=ucot2a
db de
2u
Now, ut = u cot®o. = 1 (1 + cot? o) = & cosec? ot
2 '| 2.3
But F=h? u2[u+d—z; = h® u? (u cosec® o) = — g
0 J sIn“ o
2 2
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@ 6. Find the law of force towards the pole under which the curve
T = g (1 + cos 0) can be described. (2018, 15, 1996)

Sol. Do same as Q. 3.

Ans. F' e %, 1.e. force varies inversely as the fourth power of the
r

distance from pole.

@ 7. A particle moves in an ellipse under a force which is directed
towards its focus, find the law of force and velocity at any
point on the path., (2015, 12, 02, 1993, 90)

Or A particle moves, under a force which is always directed
towards focus, in an ellipse. Find the law of force. (2017)

Sol. -~ Equaticn to the ellipse with focus as pole is £ =1+ ecost
r

1 1 -ecosb 1 ecos®
= ==k = U ==+ —
r ! l l l
2
%:—-%Sme and d > =__ZCOSB
2 -
Hence, F=h%u? ru + ﬁé_-lz B2 32 1 " ecos® ecosd
[ deJ 17 1
B w L ] 12
B =? hwhere,u=—-l-—J
ie. h = J_
B o

r2

Thus, the central force varies inversely as the square of the distance
from the focus.

Also, v? = h? [uz + (%]2} o 2 {(11 + i; cos 9)2 & (_ % Sin9)2]
[

2
=ul}= + % (cos®0 + sin?0) + L cosﬁ] ‘

2
f 2e 1 - ¥
l ;

1. ol 2 1]
(1 + ecosB) l(l )J—u . aJ

as I=—=a(1-¢° [where, 2a is major axis of the ellipse]
a
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@ 8. Prove that if the system is conservative, then
2
(du] g2 2~ V).

e 2017
de h? (o1
Sol. By the principle of conservation of energy
K.E. + P.E. =E (constant)
or %mv2 +V=FK
or lmsz—V
= mv2=2(E—V)=>m(r"2+r2E')2)=2(E—V)['.‘Vzi'i'+réé]
[ du)? . 1 I 1]
h——| + = 08%=2(E -V ==
. n|(h %) + 58 |2 -v v~ ]
% 2 9]
= m hﬂ(@_] P a@m -y
i a6 e
. N (@)213&_@ 6
| 1 2@-
For unit mass Eq. (i) becomes [uz + (%) J= -2-@}?37—) Hence proved.

i .
b Long Answer Questions

@ 1. Obtain the differential equation of central orbit. (2018, 16)

Or Find the equation of the central orbit in polar
coordinates (r, 6). (2014, 07)

Or Prove that the differential equation of a central orbit is
2
i R,
de> h2u?
Sol. Let a particle movesin a plane with an acceleration ¥ which is always
directed to a fixed point O in the plane. Taking the centre of force O as the
pole.-
Again, let OX be the initial line and (r,8) the polar
coordinates of the position P of the moving particle at
any instant ¢. Since, the acceleration of the particle is
always directed towards the pole O, therefore the r
particle has only the radial acceleration and the 6
transverse component of the acceleration of the 4~ X
particle is always zero. :

(2008, 02)

P{r8)
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So, the equations of motion of the particie az poiz: Pare
the radial acceleration

d2 de) )
_F
= a [dt ®

[+ — ve sign has been taken, because the radial acceleration
F is in the direction of r decreasing]

and the transverse aceceleration, i.e. 1a (rz @) =0 ...(11)
r di di
do
From E have — | r* —
 From Eq. (1), we have 7 (r dt]

. : 2 dO
On integrating, we get r A = constant = A {say) ...{ii1)
Let ez l

u
Now, from HEqg. (iii), we have
o8 % =h u®
dt r
Mo, r__Ldu_ 1dudd_ 1 du o du
dt u® dt u? do dt u° do do
d27' dzu de d2 2 2 2 dzu
and —=—-h—.—=—h—5 . (uh)=-
- dt® de® " dt 46’ ) de?

On putting these values in Eq. (@), we get
% 251_1{_}_ (w2h)? = —
i

d2
% B2 y? “u ch2 = F
92
d*u .
P A

which is differential equation of a central orbit in polar form referred to
the centre of force as the pole. '

Q 2. Obtain the differential equation of central orbit in pedal

form. (2016)
Or Derive equation of central orbit in terms of p and r.
(2017)

Sol. Let pbe the length of the perpendicular drawn from the origin upon
the tangent at the point P, we have

p* r® r4 a0
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But u = 1, therefore
r
du _ 1.dr i
db r? do
(du]g 1 (dr)z
= | b
de r* \ do
1 [ (CZZL}z = X
—=uc+ | = =
p2 H dB (1) S
On differentiating Eq. (i) w.r.t. 8, we get M
2 2 '
_13@ . du 2dudz;:2du u+rd—lé
p° db de do do do do
-1l du _F | [ F ]
3 de de A2yl [ d6? h? u2J
., _Llar Ei_(_}_ ﬂ) F
p° dr de r? de )i h® u?
. 1dp_ 1 F _, F _F
p°dr r* n*ut h*u®  p?
_Pdp
p® dr

which is required differential equation of a central orbit in pedal form or
in terms of p and r,

@ 3. A particle moves in a plane with an acceleration which
is always directed towards a fixed point. Find the
equation of central orbit. (2012, 1996, 93, 91)

Sol. See the solution of Q. 1 and 2.
(r+2a)
- 10

towards
75
origin, is projected from the point (a, 0) with a velocity
equal to the velocity from infinity at an angle cot™* 2
with initial line. Show that path is r = a (1 + 2sin0)2015)

Sol. Here, the central acceleration is

F=”—(r};—2—?)=u(;lz+i_5a):”(”4+2“u5)

Q 4. A particle subject to an acceleration p -

Let V be the velocity of the particle acquired in falling from rest from
infinity under the same acceleration to the point of pro;ectmn which is at
a distance ‘@’ from the centre. Then,

vi=—2 [ Fir=-2{"p Lr—+2—“}
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[ 1 2«7 - g - 5p
=-2u [_}"'E-{ s B P P
3r 4r= LT Jav . 34
5
= e,
V3a
According to the question, the velocity of projection of the particle 1s
[ 5

equal to V, 1.e. ‘——'——.
a V 3a®
Now, the differential equation of the path is
dul F
RAul+ == =5 (wt + 200°) = u? + 2a1®
[ dezJ 2o )y=1( )
On multiplying both the sides by 2 (%) and then integrating, we get
[
=kl (du)
de

where, A is a constant.

9 3
T (—~— + au“_] + A )

But initially, when r=q, i.e. u = l, U=l
a 3a

Also, initially ¢ = cot™1 2 = cot ¢0=2=sn¢ =

-

But p=rsin¢

- 1 a 1 b
Therefore, initially p=a | —=|=— =~ = Z.
#E | (JEJ 5 T p? gl

But —15 =i+ (du)
D do
s v 2 du 2 5
Therefore, initially when r = o, we have 2 + | 22| = =
_ a

Applying the above initial conditions in Eq. (i), we have

5“ 2 (2 Q',)
Rl Y o
3¢a° a’ B a*

R2=H 4-0
3a’

On putting the values of A% and Ain Eg. (1), we have

il (&) ] ()

2
= (_‘}Iﬁ) =2qu” + 3a%u* — u”
do
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1 du 1 dr

Put y="="=—- .
r doé r? de v
(Hi dry’_2a  3a® 1
r? de. R rt  rt 1
9 ¢=cot~'2 N
(fd—r) =2ar + 3a* - r* C  A@Y X
ao
=8a®~(r?-2ar)=3a*-(r-a)®+ a?®
=4a% - (r - a)®
dr % 9
= —=4a)'-(r—-a
— =10 - -a)

[ dr : e .

[. Ty has been taken with positive sign as the particle
starts moving from A, r increases as 0 increases]
dr

de

~Jear—¢- a>2
On integrating, we get

8+ B=sint 2
2a
But intially, when r = ¢, then 8 =0
B=sin10=0
'B=sin“1( a):}sin(?: 7~ 9
2a 2a
= r=q+2asmf=r=a(l+2sin6)

which is the required equation of the path.
@ 5. A particle is moving with central acceleration

(> - ¢*r) being projected from an apse at a distance ¢

with velocity J(zs—u) ¢, show that its path is the curve
xt+yt=ct. (2001)

Sol. Here, the central acceleration is
4
F=u (r5 —c4r):u (%—i-]
u

- The differential equation of the path is

fasda)F_n(1 & (1 ¢
do? w2 owl\u® u Wt
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On multiplying both the sides by 2 (%g) and then integrating, we get

[ du 2] 1 ¢t
2_p2i 2 ey, .1 ¢ :
=k [u +[d@)J 1.1[ 3u6+ u2J+A ()

where, A is a constant.

But initially, whenr=¢ ie. u = }-, % =0 (at an apse) and v=¢ («»——)
c

~.From Eq. (i), we have

3 @
2_2 g
= '3: ne”, A=0
On putting the values of A% and 4 in Eq. (1), we have
2 g I- 2 du 2-' 1 04
ahe | (%) [T
du)® 1 3¢
8 . 8,2
= (Eé’) Tonf 24
= isr—% + g—c‘iu“ - csus]
u- L
= -ls— ’——% - {CB u8 -2-(34!&4}
u . -4
_il1 et §}2 9]
u| 2 4} 16
[(1y? 7]
() -3
u
“t S & (-
- ' 48 = _cuPdu
(G (-
4

Put c*u? —g =z = 4c*'u’du =dz

4d9 =
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On integrating, we get
40 + B= sin‘l[ﬁ) =sin~* @z) [where, Bis a constant]

=5 40 + B=sin7! [4c*u? - 3]
But initially, when u = Lo=0
C

B=sin_11=1|:~
2

40 + g —sin~  (4ctu? - 8)

= sin (g + 49) =4ctu* -3

= cos46 = 4c*u? —3or4c*u? =3 + cos 40

=% aetirt —3+cos46

= 4c* =r? [3+ @ cos®20 - 1)] = 2r* [1+cos 20]

=2r* [(cos®6 + sin?6)% + (cos?8 —sin 20)?]
=4r*[cos? 0 + sin* 9]
¢* = (r cos8)* + (rsinB)*
= ¢t =xt+ 44 [.- x=rcos6, y=rsind]

which is the required equation of the path. -

Q@ 6. A particle moves with a central acceleration
T8
(distance)?

. Find the path in different possible cases.

| (2004)
Sol. Given that, F' = is or F=pu®
r

The equation of the central 0rb1t 1s
d%u we du ( 1) ) .
+u= = ={—=1lu ookl
de? % de® \r? %
Case I Let hZ%<p, so that
hi —1 = k2 (positive)

= i—}i:‘quor(..?l)2 K)u=0
de?
Its general solution is u = A4 B
where, A and B are arbitrary constants.
This is a spiral curve with an infinite number of convolutions about pole.

In the particular case, when A and B vanishes, 1t 1s an equiangular
spiral.
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Case Il Let A2 =y, = = 0. Its solution is

u= A0 + B, where A and B are arbitrary constanzs.
This represents a reciprocal spiral in generai. In the particular case,
when A =0, it is a circle.

Case I1I Let R >, so that (% - 1) 1s negative.

91
A S — k2
Therefore, Eq. (1) becomes
dzu 2
—2 =- k [74
do

Its solution is © = A cos (k@ + B),
where A and B are arbitrary constants, which represents a conic.

@ 7. In a central orbit the force is pu3(3 +2a2u?), if the
particle be projected at a distance with a velocity. [(5—2)
, a

in a direction making an angle tan "’ ;Twith the radius,

prove that the equation to the path is r = atan0. (1996)

Sol. Given, central acceleration, F =pu® 3 + 2a%?)
The differential equation of the path is

2
hz[u Z;} F; uu @+ 2”1 =1 Gu + 2a%®)
u  u’

On multiplying both the sides by 2 (j@) and then integrating, we get

v =h? {uz + [%)2} =2u {3;2 + 20;”1 + A

where A is a cosntant.

2 ,
= 02=h2{u2+(~§—g} ] LBul+atuh)+ A ... (1)

But initially, whenr=aq, 1.e, u = 1, then
a

.
v= \/[@—L), ¢ =tan™"

a

L\‘.ﬂl—a
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= tanp ==orsin¢g =
Y
o= _u—u2+(£d_z£)2—-_5_
p2 do a?

- On putting the values of k% and Ain Eq. (1), we have
[ 7]
m luz + (g%] J =u@Bu?+ o) + a% | _
|

i
2t =—1§ (2121%;2 +a‘ut + 1)

=
de a
r 6 r“ de
(_ii’:)z——l ggj+_.ci+1
rZ de a?\ 2
2
= (-fi%) —12-(20:?‘ + +r4)—- (@ + r9
a a®
dr 1 o 9 adr
= —=—(r"+a’)=>db = .
de « ( ) r?+ a?
On integrating, we get
0+ B=tan™! [—t) [where, Bis a constant.] ...(i1)
a

But 1mt1a11y, when r=a, let = g

Then, z +B=tan'1= Z—, so that B=0
On-putting B =0in Eq. (ii), we get
0= tan"l(i]
a

; r=atan®
Whlch is the required eguation of the path. Hence proved.



