· ...

RIEMANN-STIELTJES INTEGRALS

(b) Important Points from the Chapter

1. **Riemann-Stieltjes Sum** Let f be a bounded function and $P = \{a = x_0, x_1, x_2, ..., x_n = b\}$ be a partition of [a, b].

Again, let $m_k = \text{glb}\{f(x): x \in [x_{k-1}, x_k]\}$, $M_k = \text{lub}\{f(x): x \in [x_{k-1}, x_k]\}$ and g be monotonically non-decreasing bounded function on [a, b]. Since, g(a) and g(b) both are finite, we write $\delta_{g_k} = g(x_k) - g(x_{k-1})$. Then, $\delta_{g_k} > 0$.

We write the following two sums

$$L(f, g, P) \sum_{k=1}^{n} m_k \delta_{g_k}$$
 and $U(f, g, P) = \sum_{k=1}^{n} M_k \delta_{g_k}$

These sums are respectively called lower and upper Riemann-Stieltjes sums (or simply lower and upper RS-sums). (2012)

2. Lower and Upper RS-Integrals Let f be a bounded function on [a, b] and g is a monotonically non-decreasing function on [a, b]. Now, let P be the class of all partition of [a, b]. Then,

$$\int_{\underline{a}}^{b} f \, dg = \text{lub}\{L(f, g, P) : P \in \mathbf{P}\} \text{ and } \int_{\underline{a}}^{\overline{b}} f \, dg = \text{glb}\{U(f, g, P) : P \in \mathbf{P}\}.$$

These integrals are respectively called the lower and upper RS-integrals of relative to g over [a, b]. (2012, 07)

3. Riemann-Stieltjes Integrable A bounded function $f: [a, b] \to R$ is said to be Riemann-Stieltjes integrable (or RS-integrable) relative to a monotonically non-decreasing function g on [a, b], if $\int_{\underline{a}}^{b} f dg = \int_{a}^{\overline{b}} f dg$ and the common value is called the RS-integral of f relative to g over [a, b] and it is denoted by $(RS) \int_{a}^{b} f dg$ or $(S) \int_{a}^{b} f dg$.

The function f is called the **integrand** and g is called **integer**.

The class of all RS-integrable functions relative to g over [a, b] is denoted by RS([a, b], g) or RS(g).

■ Note The statement " $\int_a^b f dg$ exists" means that the function f is bounded and g is monotonically non-decreasing and f is integrable relative to g over [a, b].

4. Mean Value Theorem Let $f \in RS(g)$ on [a, b]. Then, $m [g(b) - g(a)] \le (S) \int_a^b f \, dg \le M[g(b) - g(a)]$

where, m and M are the bounds of f on [a, b].

(2007)

Very Short Answer Questions

- Q 1. Show that Riemann-Stieltjes integral is generalisation of Riemann-integral. (2014)
 - Or Define Riemann-Stieltjes integral. Show that Riemann integral is particular case of it. (2012)

Sol. Part I Riemann-Stieltjes Integral A bounded function $f:[a,b] \to R$ is said to be Riemann-Stieltjes integrable (or RS-integrable) relative to a monotonically non-decreasing function g on [a,b], if $\int_{\underline{a}}^{b} f dg = \int_{a}^{\overline{b}} f dg$ and the common value is called the RS-integral of f relative

to g over [a, b] and it is denoted by $(RS) \int_a^b f \, dg$ or $(S) \int_a^b f \, dg$.

The function f is called the intergrand and g is called integer. The class of all RS-integrable functions relative to g over [a, b] is denoted by RS([a, b], g) or RS(g).

Part II If f(x) be a bounded function and g(x) be a monotonic non-decreasing function on [a, b]. Then, f(x) is called RS-integrable on [a, b] relative to g(x), if

$$\int_{\underline{a}}^{b} f \, dg(x) = \int_{a}^{\overline{b}} f \, dg(x) \qquad \dots (i)$$

Now, if we replace g(x) by x, then Eq. (i) becomes

$$\int_{\underline{a}}^{b} f dx = \int_{a}^{\overline{b}} f dx$$

which is R-integral.

Hence, RS-integral is the generalisation of Riemann-integral.

Q 2. Prove that the lower RS-sum for a partition is always less than or equal to the upper RS-sum for any partition.

Sol. Let P_3 be a partition of [a,b], which is a refinement of both P_1 and P_2 . Then, $L_1(f,g,P_1) \leq L_3(f,g,P_3)$ and $U_3(f,g,P_3) \leq U_2(f,g,P_2)$

But $L_3(f, g, P_3) \le U_3(f, g, P_3)$

Hence, $L_1(f, g, P_1) \le L_3(f, g, P_3) \le U_3(f, g, P_3) \le U_2(f, g, P_2)$

i.e. $L_1(f, g, P_1) \leq U_2(f, g, P_2)$

Similarly, we can show that

 $L_2(f, g, P_2) \le U_1(f, g, P_1).$

Hence proved

.

Short Answer Questions

- Q 1. Prove that for a bounded function, the upper RS-integral is never less than the lower RS-integral. (2016)
 - Or Define upper and lower RS-integrals. Prove that the lower RS-integral cannot exceed the upper RS-integral. (2010)

Sol. Part I Lower and Upper RS-integrals Let f be a bounded function on [a, b] and g is a monotonically non-decreasing function on [a, b].

Now, let P be the class of all partition of [a, b]. Then,

$$\int_a^b f \, dg = \mathrm{lub} \{ L(f,g,P) : P \in \mathbf{P} \} \text{ and } \int_a^b f \, dg = \mathrm{glb} \{ U(f,g,P) : P \in \mathbf{P} \}.$$

These integrals are respectively called the lower and upper RS-integrals of relative to g over [a, b].

Part II Let f be a bounded function on [a, b] and g is monotonic non-decreasing function on [a, b].

Since, $\int_a^{\overline{b}} f dg = \text{glb of the set of upper } RS$ -sums, we choose an upper

RS-sum s(f, g, P) for a partition P of [a, b] such that

$$\int_{a}^{\overline{b}} f \, dg > S(f, g, P) - \frac{\varepsilon}{2}, \text{ for } \varepsilon > 0$$

Similarly, $\int_{\underline{a}}^{b} f \, dg = \text{lub of the set of lower } RS \text{ sums, we choose a lower}$

RS-sum s(f, g, P) such that

$$\begin{split} &\int_{\underline{a}}^{b} f \ dg < S(f,g,P) + \frac{\varepsilon}{2}, \text{ for } \varepsilon > 0 \\ &\int_{a}^{\overline{b}} f \ dg - \int_{a}^{b} f dg > U(f,g,P) - L(f,g,P) - \varepsilon \end{split}$$

But $U(f, g, P) - L(f, g, P) \ge 0$, therefore

$$\int_{a}^{\overline{b}} f \, dg - \int_{a}^{b} f \, dg > -\varepsilon, \text{ i.e. } \int_{a}^{b} f \, dg < \int_{a}^{\overline{b}} f \, dg + \varepsilon$$

Since, $\varepsilon > 0$ is arbitrary, then

$$\int_{a}^{b} f dg \le \int_{a}^{\overline{b}} f dg$$

Hence proved.

Q 2. Let f be continuous and g be monotonic, non-decreasing on [a, b], then $f \in RS$ on ([a, b], g). (2014)

Sol. Since, f is continuous on [a, b], so it is bounded on [a, b] and attains its glb and lub on [a, b] and on every closed subintervals of it. Also, f is uniform continuous on [a, b].

Then, for $\varepsilon > 0$, there exists a positive number $\delta > 0$ such that

$$|f(x') - f(x'')| < \frac{\varepsilon}{g(b) - g(a)}, \text{ for } |x' - x''| < \delta, \forall x', x'' \in [a, b]$$

Now, [a, b] divided in n equal parts such that $n > \frac{b-a}{\delta}$.

We denote this partition by P.

Let $m_k = \text{glb}\{f(x) : x \in [x_{k-1}, x_k]\}$

and $M_k = \text{lub}\{f(x) : x \in [x_{k-1}, x_k]\}.$

Next, we put $f(x'_k) = m_k$ and $f(x''_k) = M_k$. Then,

$$\begin{aligned} M_k - m_k &< \frac{\varepsilon}{g(b) - g(a)} & [\because |x_k' - x_k''| < \delta] \\ & \therefore U(f, g, P) - L(f, g, P) = \sum_{k=1}^{n} (M_k - m_k) (g(x_k) - g(x_{k-1})) \\ & < \sum_{k=1}^{n} \frac{\varepsilon}{g(b) - g(a)} (g(x_k) - g(x_{k-1})) \\ & = \frac{\varepsilon}{g(b) - g(a)} \sum_{k=1}^{n} (g(x_k) - g(x_{k-1})) \end{aligned}$$

Hence, f is RS-integrable on ([a, b], g).

Hence proved.

Q 3. If f is bounded function on [a, b] and α is monotonic increasing function, then $f \in R(\alpha)$ iff for every $\varepsilon > 0$, there exists a partition P such that $U(p, f, \alpha) - L(P, f, \alpha) < \varepsilon$.

(2012, 08)

 $= \frac{\varepsilon}{g(b) - g(a)} (g(b) - g(a)) = \varepsilon$

Sol. Necessary condition Let f be RS-integrable relative to α over [a, b].

Then,
$$\int_{\underline{a}}^{b} f \, d\alpha = \int_{a}^{\overline{b}} f \, d\alpha \qquad ...(i)$$

Since, $\int_{\underline{a}}^{b} f \, da = \sup L(P, f, \alpha)$ over all partitions P, there exists a partition P_1 such that

$$\int_{\underline{a}}^{b} f \, d\alpha < L(P, f, \alpha) + \frac{\varepsilon}{2}, \, \varepsilon > 0 \qquad \dots \text{(ii)}$$

Similarly, $\int_a^{\overline{b}} f d\alpha = \inf U(P, f, \alpha)$

Therefore,
$$U(P_2, f, \alpha) < \int_a^{\overline{b}} f \, d\alpha + \frac{\varepsilon}{2}, \varepsilon > 0$$
 ...(iii)

Let $P = P_1 \cup P_2$. Then, P is the common refinement of P_1 and P_2 Therefore, from Eqs. (ii) and (iii),

$$\int_{\underline{a}}^{b} f d\alpha < L(P, f, \alpha) + \frac{\varepsilon}{2} \qquad ...(iv)$$

and
$$U(P, f, \alpha) < \int_a^{\overline{b}} f dg + \frac{\varepsilon}{2}$$
 ...(v)

On adding Eqs. (iv) and (v), we get

$$\int_{\underline{a}}^{b} f \, dg + U(P, f, \alpha) < L(P, f, \alpha) + \int_{\alpha}^{\overline{b}} f \, d\alpha + \varepsilon \qquad \dots \text{(iv)}$$

From Eq. (i), we get

 \Rightarrow

$$U(P, f, \alpha) < L(P, f, \alpha) + \varepsilon$$

 $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$

Hence, the condition is necessary.

Sufficient condition Let for a positive integer $\varepsilon > 0$, there exists a partition P of [a, b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$$
 ...(vii)

By definition, we get

$$\int_{a}^{\overline{b}} f \, d\alpha = \inf \, U(P, f, \alpha) \qquad \dots \text{(viii)}$$

and
$$\int_{\underline{a}}^{b} f \, d\alpha = \sup L(P, f, \alpha) \qquad ...(ix)$$

Therefore ,
$$\int_a^{\overline{b}} f \, d\alpha \leq U(P, f, \alpha) \qquad ...(x)$$

and
$$\int_{\underline{a}}^{b} f \, d\alpha \ge L(P, f, \alpha) \qquad ...(xi)$$

Hence,
$$L(P, f, \alpha) \le \int_a^b f \, d\alpha \le \int_a^{\overline{b}} f \, d\alpha \le U(P, f, \alpha)$$

$$\Rightarrow \int_{a}^{\overline{b}} f \, d\alpha - \int_{\underline{a}}^{b} f \, d\alpha < U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$$

$$\Rightarrow \qquad 0 < \int_{\underline{a}}^{\overline{b}} f \, d\alpha - \int_{\underline{a}}^{b} f \, d\alpha < \varepsilon \qquad \dots (xii)$$

Since, & is arbitrary, then we have

$$\int_{a}^{\overline{b}} f \, d\alpha = \int_{a}^{b} f \, d\alpha \qquad \dots (xiii)$$

Hence, f is RS-integrable relative to α over [a, b].

Hence proved.

Q 4. Let f be monotonic and g be continuous and monotonic non-decreasing on [a, b]. Then, prove that f is RS-integrable relative to g on [a, b].

Sol. Let f is monotonic non-decreasing, then f(b) > f(a).

Again, let $\varepsilon > 0$.

Since, g is continuous in [a, b], then takes all the values between g(a) and g(b).

Also, g is monotonic non-decreasing, we can choose a partition $P = \{a = x_0, x_1, x_2, \dots, x_n = b\}$ of [a, b] such that

$$\delta_{g_k} = g(x_k) - g(x_{k-1}) = \frac{g(b) - g(a)}{n}$$
, for $k = 1, 2, ..., n$

and
$$n > \frac{\{g(b) - g(a)\}\{f(a) - f(a)\}}{\varepsilon}$$
 Let
$$M_k = \text{lub}\{f(x) : x \in [x_{k-1}, x_k]\} \text{ and } m_k = \text{glb}\{f(x) : x \in [x_{k-1}, x_k]\}.$$
 Then,
$$M_k = f(x_k), m_k = f(x_{k-1})$$
 Thus,
$$U(P, f, g) - L(P, f, g) = \sum_{k=1}^{n} (M_k - m_k)\{g(x_k) - g(x_{k-1})\}$$

$$= \sum_{k=1}^{n} \{f(x_k) - f(x_{k-1})\} \frac{g(b) - g(a)}{n}$$

$$= \frac{\{f(b) - f(a)\}\{g(b) - g(a)\}}{n}$$

<

Hence, f is RS-integrable relative to g over [a, b].

Hence proved.

Q 5. If $f \in RS(g)$ on [a, b] and c is a real number, then prove that $c f \in RS(g)$ on [a, b] and $\int_a^b c f dg = c \int_a^b f dg$.

Sol. Since, f is RS-integrable on [a, b], $\int_{\underline{a}}^{b} f \, dg = \int_{a}^{\overline{b}} f \, dg$ and f is bounded on [a, b]. Then, $|cf| = |c| |f| \Rightarrow cf$ is bounded on [a, b].

Let $P = \{a = x_0, x_1, x_2, \dots, x_n = b\}$ be a partition of [a, b] and M_k, m_k be the lub and glb of f on $[x_{k-1}, x_k]$. Then, cM_k and cm_k are the bounds of cf on $[x_{k-1}, x_k]$.

Again, let $\delta_{g_k} = g(x_k) - g(x_{k-1})$

Now, let c > 0.

Then,

$$\int_{\underline{a}}^{b} cfdg = \text{lub} \left\{ \sum_{k=1}^{n} cm_{k} \delta_{g_{k}} \right\} = c \text{ lub} \left\{ \sum_{k=1}^{n} m_{k} \delta_{g_{k}} \right\} \\
= c_{g_{k}} \int_{\underline{a}}^{b} fdg = c \int_{\underline{a}}^{\overline{b}} fdg \qquad ...(i)$$

$$= c \text{ glb} \left\{ \sum_{k=1}^{n} M_{k} \delta_{g_{k}} \right\} = \text{ glb} \left\{ \sum_{k=1}^{n} cM_{k} \delta_{g_{k}} \right\} \\
= \int_{\overline{b}}^{\overline{b}} c f dg \qquad ...(ii)$$

Hence, cf is RS-integrable on [a, b] and in view of Eqs. (i) and (ii), we get $\int_a^b c f dg = c \int_a^b f dg$

For c = 0, the result is obvious.

Suppose c < 0. In this case cM_k and cm_k , are respectively denote the glb and lub of cf of $[x_{k-1} - 1, x_k]$.

Thus,
$$\int_{\underline{a}}^{b} c f \, dg = \text{lub} \left\{ \sum_{k=1}^{n} c M_{k} \delta_{g_{k}} \right\} = c \cdot \text{glb} \left\{ \sum_{k=1}^{n} M_{k} \delta_{g_{k}} \right\}$$
 [:: $c < 0$]

$$= c \int_{\underline{a}}^{b} f dg = c \cdot \text{lub} \left\{ \sum_{k=1}^{n} m_{k} \delta g_{k} \right\} = \text{glb} \left\{ \sum_{k=1}^{n} c M_{k} \delta g_{k} \right\}$$
 [:: $c < 0$]

$$= \int_{a}^{\overline{b}} c \cdot f \, dg \qquad \qquad \dots \text{(iii)}$$

Hence, cf is RS-integrable on [a, b] and in view of Eq. (iii).

$$\int_{a}^{b} c f dg = c \int_{a}^{b} f dg$$

which completes the proof of this theorem.

Q 6. If $f \in RS(g_1)$ on [a, b] and $f \in RS(g_2)$ on [a, b], then prove that $f \in RS(g_1 + g_2)$ and $\int_a^b f d(g_1 + g_2) = \int_a^b f dg_1 + \int_a^b f dg_2$. (2007)

Sol. Since, $f \in RS(g_1)$ on [a, b], for given $\varepsilon > 0$, there exists a partition P_1 of [a, b] such that

$$U(P_1 f, g_1) - L(P_1, f, g_1) < \frac{\varepsilon}{2}$$

Similarly, there exists a partition P_2 of [a, b] such that

$$U(P_2, f, g_2) - L(P_2, f, g_2) < \frac{\varepsilon}{2}$$

Let

$$P = P_1 \cup P_2 = \{\alpha = x_0, x_1, x_2, \dots, x_n = b\}$$

Then, P is a common refinement of P_1 and P_2 , therefore

$$U(P, f, g_1) - L(P, f, g_1) < \frac{\varepsilon}{2}$$

and

$$U(P, f, g_2) - L(P, f, g_2) < \frac{\varepsilon}{2}$$

Let M_k and m_k are lub and glb of f in $[x_{k-1}, x_k]$.

Then,
$$\delta_{g_{1k}} = g_1(x_k) - g_1(x_{k-1})$$
 and $\delta_{g_{2k}} = g_2(x_k) - g_2(x_{k-1})$

Let $g = g_1 + g_2$. Then, $\delta_{g_k} = \delta_{g_{1k}} + \delta_{g_{2k}}$

and
$$\sum_{k=1}^{n} (M_k - m_k) \delta_{g_k} = \sum_{k=1}^{n} (M_k - m_k) \delta_{g_{1k}} + \sum_{k=1}^{n} (M_k - m_k) \delta_{g_{2k}}$$

$$\Rightarrow U(P, f, g) - L(P, f, g) = [U(P, f, g_1) - L(P, f, g_1)] + [U(P, f, g_2) - L(P, f, g_2)] < \varepsilon$$

$$f \in RS(g)$$

Since, $U(P, f, g) = \sum_{k=1}^{n} M_k \delta g_{1k} + \sum_{k=1}^{n} M_k \delta g_{2k}$

$$=U(P, f, g_1) - U(P, f, g_2)$$

glb
$$[U(P,f,g)]=\operatorname{glb}\left[U(P,f,g_1)+U(P,f,g_2)\right]$$

...

$$\geq \text{glb} [U(P, f, g_1) + U(P, f, g_2)] \\ \therefore \int_a^b f dg \geq \int_a^b f dg_1 + \int_a^b f dg_2 \qquad ...(i)$$

Similarly, $L(P, f, g) = L(P, f, g_1) + L(P, f, g_2)$ implies that

lub
$$[L(P, f, g)] = \text{lub } [L(P, f, g_1] + L(P, f, g_2)]$$

 $\leq \text{lub } [L(P, f, g_1)] + \text{lub } [L(P, f, g_2)]$

$$\int_{a}^{b} f dg \le \int_{a}^{b} f dg_{1} + \int_{a}^{b} f dg_{2} \qquad \dots (ii)$$

From Eqs. (i) and (ii), we have

$$\int_a^b f \, dg = \int_a^b f \, dg_1 + \int_a^b f \, dg_2$$

Hence proved.

Q 7. If $f \in RS(g)$ on [a, b], then prove that $|f| \in RS(g)$ on [a, b] and $\left| \int_a^b f \, dg \right| \le \int_a^b |f| \, dg$.

Sol. If $f \in RS(g)$ on [a, b], there exists k > 0 such that

$$|f(x)| \le k, \forall x \in [a, b].$$

Therefore, |f| is bounded on [a, b].

Let $\epsilon > 0$

Then, there exists a partition $P = \{a = x_0, x_1, x_2, \dots, x_n = b\}$ of [a, b] such that

$$U(P, f, g) - L(P, f, g) < \varepsilon$$
, i.e. $\sum_{k=1}^{n} (M_k - m_k) \delta_{g_k} < \varepsilon$

where, M_k and m_k are lub and glb respectively, of f on $[x_{k-1}, x_k]$ and $\delta_{g_k} = g(x_k) - g(x_{k-1}) > 0$.

Let M'_k and m'_k are lub and glb of [f] on $[x_{k-1}, x_k]$ and $x', x'' \in [x_{k-1}, x_k]$.

Then, $||f(x')| - |f(x'')|| \le |f(x') - f(x'')|$

$$\Rightarrow$$
 $M_k' - m_k' \leq M_k - m_k$

So that $U(P, |f|, g) - L(P, |f|, g) \le U(P, f, g) - L(P, f, g) < \varepsilon$

Therefore, $|f| \in RS(g)$

Now, let
$$f_1 = \frac{1}{2} (|f| + f), f_2 = \frac{1}{2} (|f| - f)$$

Then, for every $x \in [a, b]$, $f_1(x)$, $f_2(x) \ge 0$ and f_1 , $f_2 \in RS(g)$.

Thus, we have $\int_a^b f_1 dg \ge 0$, $\int_a^b f_2 dg \ge 0$

Furthermore, we have

٠.

$$\begin{aligned} |f| &= f_1 + f_2, \ f = f_1 - f_2 \\ \left| \int_a^b f \ dg \right| &= \left| \int_a^b f_1 \ dg - \int_a^b f_2 \ dg \right| \le \left| \int_a^b f_1 \ dg \right| + \left| \int_a^b f_2 \ dg \right| \\ &= \int_a^b f_1 \ dg + \int_a^b f_2 \ dg = \int_a^b |f| \ dg \qquad \text{Hence proved.} \end{aligned}$$

Q 8. Let f and g be defined on [0, 2] by $f(x) = g(x) = \begin{cases} 0, & \text{if } 0 \le x \le 1 \\ 1, & \text{if } 1 < x \le 2 \end{cases}$, then prove that both the integrals $\int_0^1 f \, dg$ and and $\int_1^2 f \, dg$ exist but the integral $\int_0^2 f \, dg$ does not exist.

Sol. Since, g = 0 (constant) on [0, 1], then $\int_0^1 f \, dg = 1$, so the value exists. Again, since f is constant on [1, 2], then $\int_1^2 f \, dg$ exists and has the value g(2) - g(1) = 1 - 0 = 1.

To investigate the existence of $\int_0^2 f dg$, let $P = \{0 = x_0, x_1, x_2, \dots, x_n = 2\}$ be a partition of [0, 2], which does not include the point 1.

Let for some $r, x_{r-1} < 1 < x_r$. Then, $\delta_{g_r} = g(x_r) - g(x_{r-1}) = 1 - 0 = 1$ and $\delta_{g_k} = 0$ for $k \neq r$

Now,
$$\sum_{k=1}^{n} M_k \delta_{g_k} = M_r \delta_{g_r} = M_r = 1 \text{ and } \sum_{k=1}^{n} m_k \delta_{g_k} = m_r \delta_{g_r} = m_r = 0.$$

$$\therefore \int_0^{\frac{\pi}{2}} f dg = 1 \text{ and } \int_0^2 f dg = 0$$

Hence, $\int_0^2 f dg$ does not exist.

Hence proved.

b Long Answer Questions

- **Q 1.** (i) Prove that, if $f_1, f_2 \in RS(g)$ for [a, b], then $f_1 + f_2 \in RS(g)$ for [a, b]. (2011)
 - (ii) Prove that a continuous function f is RS-integrable with respect to g increasing on [a, b].
- Sol. (i) See the solution of Q. 6 of Short Answer Questions.
 - (i) See the solution of Q. 2 of Short Answer Questions.
 - **Q 2.** Define lower and upper RS-integrals. If f is RS-integrable on [a, b] with respect to a increasing on [a, b] and $m = \inf f(x)$ and $M = \sup f(x)$ on [a, b], then prove that $m[\alpha(b) \alpha(a)] \le \int_a^b f d\alpha \le M[\alpha(b) \alpha(a)]$.

(2007)

Sol. Part I Lower and Upper RS-intergrals Let f be a bounded function on [a, b] and g is a monotonically non-decreasing function on [a, b].

Now, let P be the class of all partition of [a, b]. Then,

$$\int_{\underline{a}}^{b} f \, dg = \text{lub}\{L(f, g, P) : P \in \mathbf{P}\}\$$

and

$$\int_{a}^{\overline{b}} f \, dg = \text{glb}\{U(f,g,P): P \in \mathbf{P}\}\$$

These integrals are respectively called the lower and upper RS-integrals of relative to g over [a, b].

Part II Let $P = \{x_0, x_1, x_2, ..., x_n\}$ be any partition of [a, b]. Let m_r and M_r be the infimum and supremum of f(x) in the subinterval $[x_{r-1}, x_r]$. Then, we have $m \le m_r \le M_r \le M$

$$\Rightarrow m \delta \alpha_r < m_r \delta \alpha_r \le M_r \delta \alpha_r \le M \delta \alpha_r$$

$$\Rightarrow \sum_{r=1}^{n} m \delta \alpha_{r} \leq \sum_{r=1}^{n} m_{r} \delta \alpha_{r} \leq \sum_{r=1}^{n} M_{r} \delta \alpha_{r} \leq \sum_{r=1}^{n} M \delta \alpha_{r}$$

$$\Rightarrow m \left[\alpha(b) - \alpha(a)\right] \leq L(P, f, \alpha) \leq U(P, f, \alpha) \leq M\left[\alpha(b) - \alpha(a)\right] \dots (i)$$

Also, we know that,

$$L(P, f, \alpha) \le \int_{\overline{a}}^{b} f(\alpha) d\alpha \le \int_{a}^{\overline{b}} f(\alpha) d\alpha \le U(P, f, \alpha)$$
 ...(ii)

From Eqs. (i) and (ii), we have

$$m\left[\alpha(b) - \alpha(a)\right] \le \int_{\overline{a}}^{b} f(\alpha) d\alpha \le \int_{a}^{\overline{b}} f(\alpha) dx \le M\left[\alpha(b) - \alpha(a)\right] \dots \text{(iii)}$$

and

$$\int_{\overline{a}}^{b} f(\alpha) d\alpha \le \int_{a}^{\overline{b}} f(\alpha) d\alpha = \int_{a}^{b} f(\alpha) d\alpha \qquad \dots \text{(iv)}$$

From Eqs. (iii) and (iv), we get

$$m \left[\alpha(b) - \alpha(a) \right] \leq \int_a^b f(\alpha) d\alpha \leq M \left[\alpha(b) - \alpha(a) \right]$$

Hence proved