Chapter Eight

IMPROPER INTEGRALS

(b) Important Points from the Chapter

- 1. **Improper Integrals** If the function f becomes unbounded on [a, b] or the limits of integration become infinite, then the integral $\int_a^b f(x) dx$ is called improper integral.
- 2. Singular Point If $|f(x)| \to \infty$ for x = c. Then, c is called a singular point of the function f(x). We say that f has infinite discontinuity at x = c.
- 3. Integral with Finite Range If a is the only singular point in [a, b] the improper integral of f(x) over (a, b) is defined by the equation

$$\int_{a}^{b} f(x) \ dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x) \ dx$$

and b is the only singular point in [a, b], then

$$\int_{a}^{b} f(x) \ dx = \lim_{\delta \to 0} \int_{\alpha}^{b-\delta} f(x) \ dx$$

If the improper integral over [a, b] exists, we say that the integral over [a, b] is convergent.

4. Principal and General Values of Improper Integrals Let f is bounded at all points of [a, b] except at c. Again, let the point c lies in the interval $(c - \varepsilon, c + \delta)$, where ε and δ are arbitrary positive numbers and independent to each other.

Then,
$$\int_a^b f(x) dx = \lim_{\varepsilon \to 0} \int_a^{c-\varepsilon} f(x) dx + \lim_{\delta \to 0} \int_{c+\delta}^b f(x) dx$$
 provided both the

limits exists. This value is called the general value of the integral.

- (i) If the general value exists, then we can say that the integral converges.
- (ii) If $\varepsilon = \delta$, the value of above limit is called the principal value of the integral.
- 5. Integral with Infinite Limits If the function f is bounded and integrable for $x \ge a$, then

$$\int_{a}^{\infty} f(x) dx = \lim_{\epsilon \to 0} \int_{a}^{1/\epsilon} f(x) dx$$

$$\int_{a}^{\epsilon} f(x) dx = \lim_{\epsilon \to 0} \int_{a}^{1/\epsilon} f(x) dx$$

and

$$\int_{-\infty}^{\infty} f(x) \ dx = \lim_{\substack{\varepsilon \to 0 \\ \delta \to 0}} \int_{-1/\delta}^{1/\varepsilon} f(x) \ dx.$$

If the above limits exists and has finite value, then the integrals are called convergent integral.

- 6. Absolute Convergence of Infinite Integrals If $\int_a^{\infty} |f(x)| dx$ converges, then the integral $\int_a^{\infty} f(x) dx$ is called absolutely convergent integral.
- 7. Tests for Convergence of Integral $\int_a^{\infty} f(x) dx$
 - (i) Comparison Test
 - (a) If $0 \le f(x) \le g(x)$ for all x > a and $\int_a^\infty g(x) dx$ is convergent, then $\int_a^\infty f(x) dx$ is also convergent.
 - (b) If $f(x) \ge g(x) \ge 0$ for all x > a and $\int_a^\infty g(x) dx$ is divergent, then $\int_a^\infty f(x) dx$ is also divergent.
 - (ii) μ-Test
 - (a) If $x^{\mu} f(x)$ is bounded for x > a and $\mu > 1$, then $\int_{a}^{\infty} f(x) dx$ is absolutely convergent. (2000)
 - (b) If $x^{\mu} f(x)$ is always of the same sign (not zero) for $\mu \leq 1$, then $\int_{a}^{\infty} f(x) dx$ does not converge.
 - (iii) Abel's Test If $\int_a^\infty f(x) dx$ converges and $\phi(x)$ is bounded and monotonic for x > a, then $\int_a^\infty f(x) \phi(x) dx$ is convergent. (2014)
 - (iv) Dirichlet Test If $\phi(x)$ is bounded and monotonic for $x \ge a$ and $\lim_{x \to \infty} \phi(x) = 0$ and $\int_a^b f(x) \, dx$ is bounded as b takes all finite values, then $\int_a^\infty f(x) \, \phi(x) \, dx$ converges. (2016, 05)
- 8. Test for the Convergence of the Improper Integral $\int_a^b f(x) dx$
 - (i) Comparison Test
 - (a) If $0 \le f(x) \le g(x)$ for $a < x \le b$ and $\int_a^b g(x) dx$ is convergent, then $\int_a^b f(x) dx$ is also convergent.

- (b) If $f(x) \ge g(x) \ge 0$ for $a < x \le b$ and $\int_a^b g(x) dx$ is divergent, then $\int_a^b f(x) dx$ is also divergent.
- (ii) μ -Test Suppose f(x) be unbounded at a and integrable in the arbitrary interval $[a+\varepsilon,b]$, where $0<\varepsilon< b-a$. If there is a number μ between 0 and 1 such that $\lim_{x\to a+0}(x-a)^{\mu}f(x)$ exists, then $\int_a^b f(x)\ dx$ converges absolutely. If there is a number $\mu\geq 1$ such that $\lim_{x\to a+0}(x-a)^{\mu}f(x)$ exists and is not zero, then $\int_a^b f(x)\ dx$ diverges and the same is true, if $\lim_{x\to a+0}(x-a)^{\mu}f(x)=\pm\infty$.
- (iii) Abel's Test If $\int_a^b f(x) dx$ converges and $\phi(x)$ is bounded monotonic in (a, b), then $\int_a^b f(x) \phi(x) dx$ converges.
- (iv) Dirichlet Test If $\int_{a+\epsilon}^{b} f(x) dx$ is bounded and $\phi(x)$ is bounded and monotonic in (a, b) converges to zero as $x \to a$, then $\int_{a}^{b} f(x) \phi(x) dx$ converges.

Very Short Answer Questions

Q 1. Evaluate the integral $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$. (2011)

Sol. We have,
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \lim_{\substack{\varepsilon \to 0 \\ \delta \to 0}} \int_{-\nu/\delta}^{\nu\varepsilon} \frac{1}{1+x^2} dx = \lim_{\substack{\varepsilon \to 0 \\ \delta \to 0}} [\tan^{-1}x]_{-\nu/\delta}^{\nu\varepsilon}$$
$$= \lim_{\substack{\varepsilon \to 0 \\ \delta \to 0}} \left[\tan^{-1}\frac{1}{\varepsilon} - \tan^{-1}\left(\frac{1}{-\delta}\right) \right]$$
$$= \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi$$

Q 2. Evaluate the integral $\int_0^1 \frac{dx}{\sqrt{x}}$. (2010)

Sol. Since, $\frac{1}{\sqrt{x}} \to \infty$ as $x \to 0$, then

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{\delta \to 0} \int_\delta^1 \frac{dx}{\sqrt{x}} = \lim_{\delta \to 0} \left[\frac{x^{1/2}}{1/2} \right]_\delta^1 = \lim_{\delta \to 0} [2x^{1/2}]_\delta^1$$
$$= 2 \lim_{\delta \to 0} [1 - \delta^{1/2}] = 2 [1 - 0] = 2$$

Q 3. Test the convergence of
$$\int_0^1 \frac{dx}{x^{1/3}(1+x^2)}$$
. (2006)

Sol. Here,
$$f(x) = \frac{1}{x^{1/3}(1+x^2)}$$
, then $\mu = \frac{7}{3} - 0$

Now,
$$\lim_{x \to \infty} x^{\mu} f(x) = \lim_{x \to \infty} x^{7/3} \cdot \frac{1}{x^{1/3} (1 + x^2)} = \lim_{x \to \infty} \frac{1}{\left(\frac{1}{x^2} + 1\right)} = \frac{1}{0 + 1} = 1$$

$$\mu = \frac{7}{3} > 1$$

Hence, $\int_0^1 \frac{dx}{x^{1/3}(1+x^2)}$ is convergent.

Q 4. Test the convergence of the integral $\int_1^\infty \frac{dx}{\sqrt{x^3+1}}$. (2016, 15, 12)

Sol. Since, $f(x) = \frac{1}{\sqrt{x^3 + 1}}$, therefore we take $g(x) = \frac{1}{x^{3/2}}$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^{3/2}}{\sqrt{x^3 + 1}} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x^3}}} = \frac{1}{\sqrt{1 + 0}} = 1$$

But $\int_1^\infty g(x) dx = \int_1^\infty \frac{1}{x^{3/2}} dx$ is convergent, therefore the given integral is convergent.

Q 5. Test the convergence of $\int_0^\infty \frac{\cos x}{1+x^2} dx$.

(2012, 09, 07, 06, 02)

Sol. We have, $f(x) = \frac{\cos x}{1 + x^2}$

Let
$$g(x) = \frac{1}{1+x^2}$$
, then $\left| \frac{\cos x}{1+x^2} \right| \le \frac{1}{1+x^2}$

Also,
$$\int_0^\infty \frac{dr}{1+x^2} = \lim_{b \to \infty} \int_0^b \frac{1}{1+x^2} = \lim_{b \to \infty} [\tan^{-1} x] = \frac{\pi}{2}$$

So, $\int_0^\infty \frac{dx}{1+x^2}$ is convergent.

Hence, by comparison test, $\int_0^\infty \frac{\cos x}{1+x^2}$ is convergent.

Q 6. Show that $\int_0^\infty e^{-x} dx$ convergent.

(2017)

Sol. We have,
$$\int_0^\infty e^{-x} dx = \lim_{\delta \to 0} \int_0^{1/\delta} e^{-x} dx = \lim_{\delta \to 0} [1 - e^{-1/\delta}] = 1$$

Hence, the integral is convergent and converge to 1.

Short Answer Questions

Q 1. Find the general and principal values of the integral $\int_0^3 \frac{dx}{(x-1)^3}$.

Sol. Since, the function $\frac{1}{(x-1)^3}$ is infinite at x=1, then we have

$$\int_{0}^{3} \frac{dx}{(x-1)^{3}} = \lim_{\varepsilon \to 0} \int_{0}^{1-\varepsilon} \frac{dx}{(x-1)^{3}} + \int_{1+\delta}^{3} \frac{dx}{(x-1)^{3}}$$

$$= \lim_{\varepsilon \to 0} \left[\frac{1}{-2(x-1)^{2}} \right]_{0}^{1-\varepsilon} + \lim_{\delta \to 0} \left[\frac{1}{-2(x-1)^{2}} \right]_{1+\delta}^{3}$$

$$= \lim_{\varepsilon \to 0} \left[\frac{1}{2} - \frac{1}{2\varepsilon^{2}} \right] + \lim_{\delta \to 0} \left(\frac{1}{2\delta^{2}} - \frac{1}{8} \right)$$

$$= \frac{1}{2} - \frac{1}{8} - \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon^{2}} + \lim_{\delta \to 0} \frac{1}{2\delta^{2}}$$

This limit does not exist, because it is of the form $\infty - \infty$.

So, the general value does not exist.

But the principal value exists, which is

$$\frac{1}{2} - \frac{1}{8} + \lim_{\varepsilon \to 0} \left(\frac{1}{2\varepsilon^2} - \frac{1}{2\varepsilon^2} \right) = \frac{3}{8}.$$

Q 2. Show that $\int_a^b \frac{1}{(x-a)^n} dx$ converges if and only if n < 1. (2013)

Sol. If n=1, then

...

$$\int_{a+\varepsilon}^{b} \frac{dx}{x-a} = [\log (x-a)]_{a+\varepsilon}^{b} = \log \left(\frac{b-a}{\varepsilon}\right)$$

$$\lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} \frac{dx}{x-a} = \infty$$

So, the integral is divergent for n = 1.

If
$$n \neq 1$$
, then $\int_{a+\epsilon}^{b} \frac{dx}{(x-a)^n} = \left[-\frac{1}{(n-1)} (x-a)^{-n+1} \right]_{a+\epsilon}^{b}$
$$= \frac{1}{1-n} \left\{ \frac{1}{(b-a)^{n-1}} - \frac{1}{\epsilon^{n-1}} \right\}$$

Now, if n > 1, then

$$\lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} \frac{dx}{(x-a)^n} = \lim_{\varepsilon \to 0} \frac{1}{1-n} \left\{ \frac{1}{(b-a)^{n-1}} - \frac{1}{\varepsilon^{n-1}} \right\} = \infty$$

Thus, the given integral is also divergent for n > 1.

If n < 1, then

$$\lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} \frac{dx}{(x-a)^n} = \frac{1}{(1-n)(b-a)^{n-1}}$$

Hence, $\int_a^b \frac{1}{(x-a)^n} dx$, converges for n < 1.

Q 3. Prove that
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$
 is convergent. (2017)

Sol. Since, the integrand $\frac{1}{\sqrt{1-x^2}} \to \infty$ at x=1.

$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}} = \lim_{\delta \to 1} \int_{0}^{\delta} \frac{dx}{\sqrt{1-x^{2}}} = \lim_{\delta \to 1} [\sin^{-1} x]_{0}^{\delta}$$

$$= \lim_{\delta \to 1} [\sin^{-1} \delta - \sin^{-1} 0]$$

$$= \sin^{-1} 1 - 0$$

$$= \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

Hence, the given integral is convergent and converge to $\frac{\pi}{2}$.

Q 4. Examine the convergence of
$$\int_0^\infty \frac{x^{2m}}{1+x^{2n}} dx.$$
 (2015, 13)

Sol. We have, $\int_0^\infty \frac{x^{2m}}{1+x^{2n}} = \int_0^a \frac{x^{2m}}{1+x^{2n}} dx + \int_a^\infty \frac{x^{2m}}{1+x^{2n}} dx$, where a > 0

Here,
$$f(x) = \frac{x^{2m}}{1 + x^{2n}}$$

Now,
$$\lim_{x\to\infty} x^{\mu} f(x) = \lim_{x\to\infty} \frac{x^{\mu} x^{2m}}{1+x^{2n}} = \lim_{x\to\infty} \frac{x^{\mu+2m}}{1+x^{2n}} = 1$$
, if $\mu + 2m = 2n$

 \therefore $\mu > 1$, if n > m and $\mu \le 1$, if $n \le m$ for m and n are positive integers.

Then, if $\mu > 1$, i.e. n > m, then $\int_a^\infty \frac{x^{2m}}{1 + x^{2n}} dx$ is convergent and if $\mu \le 1$, i.e.

 $n \le m$ then the integral is divergent.

Also, $\int_0^a \frac{x^{2m}}{1+x^{2n}}$ is not an infinite integral and so convergent. Hence, the given integral is convergent if n > m and divergent if $n \le m$.

Q 5. Test the convergence of the integral
$$\int_{-1}^{1} \frac{dx}{x^{2/3}}$$
. (2011)
Sol. Here, the integrand $\frac{1}{x^{2/3}} \to \infty$ as $x \to 0$

$$\int_{-1}^{1} \frac{dx}{x^{2/3}} = \lim_{\varepsilon \to 0} \int_{-1}^{0-\varepsilon} \frac{dx}{x^{2/3}} + \lim_{\delta \to 0} \int_{0+\delta}^{1} \frac{dx}{x^{2/3}}$$
$$= \lim_{\varepsilon \to 0} [3x^{1/3}]_{-1}^{-\varepsilon} + \lim_{\delta \to 0} [3x^{1/3}]_{\delta}^{1}$$
$$= \lim_{\varepsilon \to 0} (-3\varepsilon^{1/3} + 3) + \lim_{\delta \to 0} (3 - 3\delta^{1/3}) = 6$$

Hence, the given integral is convergent.

Q 6. Test the convergence of the following integrals.

(i)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x^{5}+1}}$$
 (ii) $\int_{a}^{b} x^{n-1} e^{-x} dx$, $n > 0$ (2010)

Sol.

(i) We have,
$$f(x) = \frac{1}{\sqrt{x^5 + 1}}$$

Let
$$g(x) = \frac{1}{x^{5/2}}$$
, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^{5/2}}{\sqrt{x^5 + 1}} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x^5}}} = \frac{1}{\sqrt{1 + 0}} = 1$$

Since,
$$\int_1^\infty g(x) \ dx = \int_1^\infty \frac{dx}{x^{5/2}}$$
 is convergent for $n = \frac{5}{2} > 1$.

Hence,
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x^5 + 1}}$$
 is convergent.

(ii) We have, x = 0 is singular point, for 0 < n < 1.

$$\lim_{x\to 0} x^{\mu} f(x) = \lim_{x\to 0} [x^{\mu+n-1} \cdot e^{-x}] = 1, \text{ if } \mu + n = 1$$

Hence, by the μ -test, the given integral is convergent if 1 - n < 1, i.e. n > 0 and divergent if $n \le 0$.

Q 7. Discuss the convergence of
$$\int_0^1 x^{n-1} \log x \, dx$$
. (2001)

Sol. Since, $\lim_{x\to 0} x^r \log x = 0$, where r > 0. So, the integrand $f(x) = x^{n-1} \log x$

has no infinite discontinuity at x = 0 for n - 1 > 0, i.e. n > 1.

Thus, the given integral is convergent for n > 1.

If
$$n = 1$$
, then

$$\int_0^1 x^{n-1} \log x \, dx = \int_0^1 \log x \, dx = \lim_{\varepsilon \to 0} \int_{\varepsilon}^1 \log x \, dx$$
$$= \lim_{\varepsilon \to 0} [x \log x - x]_{\varepsilon}^1$$
$$= \lim_{\varepsilon \to 0} [-1 - \varepsilon(\log \varepsilon - 1)] = -1$$

Hence, the integral is convergent, if n = 1.

If
$$n < 1$$
, then $\lim_{x \to 0} [x^{\mu} f(x)] = \lim_{x \to 0} [x^{\mu + n - 1} \log x] = \begin{cases} 0, & \text{if } \mu > 1 - n & \dots (i) \\ \infty, & \text{if } \mu \le 1 - n & \dots (ii) \end{cases}$

Hence, when 0 < n < 1, we can choose μ between 0 and 1 and satisfying Eq. (i). The integral is therefore convergent by μ -test when 0 < n < 1. Again, when $n \le 0$, we can take $\mu = 1$ and satisfying Eq. (ii). Hence, by μ -test the integral is divergent, when $n \le 0$.

Thus, the given integral is convergent if n > 0 and divergent if $n \le 0$.

Q 8. Explain μ -test and hence test the convergence of integral $\int_{1}^{\infty} \frac{dx}{x^{1/3}(1+x^{1/2})}.$ (2012)

Sol.

- (i) If $x^{\mu} f(x)$ is bounded for x > a and $\mu > 1$, then $\int_{a}^{\infty} f(x) dx$ is absolutely convergent.
- (ii) If $x^{\mu} f(x)$ is always of the same sign (not zero) for $\mu \le 1$, then $\int_{a}^{\infty} f(x) dx$ is divergent.

Here,
$$f(x) = \frac{1}{x^{1/3}(1+x^{1/2})}$$
, then $\mu = \frac{5}{6} - 0 = \frac{5}{6}$

$$\therefore \lim_{x \to \infty} x^{\mu} f(x) = \lim_{x \to \infty} x^{5/6} \cdot \frac{1}{x^{1/3}(1+x^{1/2})} = \lim_{x \to \infty} \frac{1}{(1/x^{1/2}+1)} = \frac{1}{0+1} = 1$$
Since, $\mu = \frac{5}{6} < 1$, then the given integral is divergent.

- **Q 9.** State and prove Abel's test and hence test the convergence of $\int_a^{\infty} \frac{(1 e^{-x})\cos x}{x^2} dx$, where a > 0. (2015)
 - Or If ϕ is bounded monotonic in $[a, \infty]$, $\phi(x)$ is convergent as $x \to \infty$ and $\int_0^\infty f(x)$ is convergent, $\forall x > a$, then prove that $\int_0^\infty f(x) \, \phi(x) \, dx$ is convergent.
- **Sol.** Statement $\int_a^\infty f(x) dx$ converges and $\phi(x)$ is bounded and monotonic for x > a, then $\int_a^\infty f(x)\phi(x) dx$ is convergent.

Proof Since, $\phi(x)$ is bounded and monotonic for x > a, therefore ϕ is integrable in [a, b], where b is any number $\geq a$. By second mean value theorem, we have

$$\int_{b_1}^{b_2} f(x) \, \phi(x) \, dx = \phi(b_1) \int_{b_1}^{\varepsilon} f(x) \, dx + \phi(b_2) \int_{\varepsilon}^{b_2} f(x) \, dx \qquad \dots (i)$$

where, $a < b_1 \le \varepsilon \le b_2$.

Again, since $\phi(x)$ is bounded, there exists a number A > 0 such that $|\phi(b_1)| \le A$ and $|\phi(b_2)| \le A$.

Also, since $\int_{b_1}^{b_2} f(x) dx$ is convergent, then there exists a number b_0 such that

$$\left| \int_{b_1}^{b_2} f(x) \ dx \right| < K \text{ for } b_1, \ b_2 \ge b_0$$

where, K > 0 is only arbitrary number.

Since, $b_1 < \varepsilon < b_2$, therefore $\varepsilon \ge b_0$.

$$\left| \int_{b_1}^{\varepsilon} f(x) \ dx \right| < K \text{ and } \left| \int_{\varepsilon}^{b_2} f(x) \ dx \right| < K$$

Hence, from Eq. (i), we get

$$\left| \int_{b_1}^{b_2} f(x) \, \phi(x) \, dx \right| \le |\phi(b_1)| \left| \int_{b_1}^{\varepsilon} f(x) \, dx \right| + |\phi(b_2)| \left| \int_{\varepsilon}^{b_2} f(x) \, dx \right|$$

$$< AK + AK$$

$$< 2AK$$

where 2AK is an arbitrary positive number.

Hence, $\int_a^\infty f(x) \phi(x) dx$ is convergent at ∞ .

Hence proved.

Let
$$f(x) = \frac{\cos x}{x^2}$$
 and $\phi(x) = 1 - e^{-x}$.

Then, $\phi(x)$ is bounded and monotonic increasing for x > a and

$$\int_{a}^{\infty} \frac{\cos x}{x^{2}} \, dx \le \int_{a}^{\infty} \frac{dx}{x^{2}}$$

Since, $\int_a^\infty \frac{dx}{x^2}$ is convergent (n=2), by comparision test $\int_a^\infty \frac{\cos x}{x^2} dx$ is convergent.

Hence, by Abel's test, $\int_a^\infty (1 - e^{-x}) \frac{\cos x}{x^2} dx$ is convergent.

Q 10. Define Abel's test for convergence of improper integral and hence test the convergence of $\int_a^{\infty} \frac{(1-e^{-x})\sin x}{x^3} dx$, where a>0.

Sol. Part I Abel's Test If $\int_a^b f(x) dx$ converges and $\phi(x)$ is bounded monotonic in (a, b), then $\int_a^b f(x) \phi(x) dx$ converges.

Part II Let $f(x) = \frac{\sin x}{x^3}$ and $\phi(x) = (1 - e^{-x}) dx$, then $\phi(x)$ is bounded and monotonic increasing for x > a, and $\int_a^\infty \frac{\sin x}{x^3} dx \le \int_a^\infty \frac{dx}{x^3}$.

Since, $\int_a^\infty \frac{dx}{x^3}$ is convergent (n=3), therefore by comparison test, $\int_a^\infty \frac{\sin x}{x^3} dx$ is convergent. Hence, by Abel's test, $\int_a^\infty \frac{(1-e^{-x})\sin x}{x^3} dx$ is convergent.

Q 11. Define Dirichlet test for the convergence of improper integral and show that $\int_0^\infty e^{-ax} \frac{\sin x}{x} dx$, $a \ge 0$ is convergent. (2016)

Sol. Part I Dirichlet Test If $\int_{a+\epsilon}^{b} f(x) dx$ is bounded and $\phi(x)$ is bounded and monotonic in (a, b) converges to zero as $x \to a$, then $\int_{a}^{b} f(x) \phi(x) dx$ converges.

Part II We have, $\int_0^\infty e^{-ax} \frac{\sin x}{x} dx = \int_0^a e^{-ax} \frac{\sin x}{x} dx + \int_a^\infty e^{-ax} \frac{\sin x}{x} dx$, for a > 0.

Obviously, $\int_0^a e^{-ax} \frac{\sin x}{x} dx$ is proper integral for $\lim_{x \to 0} e^{-ax} \frac{\sin x}{x} = 1$.

Let $\phi(x) = e^{-ax}$ and $f(x) = \frac{\sin x}{x}$

Then, $\phi(x)$ is bounded and monotonic decreasing function for all positive values of x and for $a \ge 0$.

Also, $\lim_{(x\to\infty)} f(x) = \lim_{(x\to\infty)} \frac{\sin x}{x} = 0$

Hence, $\int_0^b f(x) dx$ is bounded, when $b \to \infty$.

Thus, by Dirichlet's theorem, the integral $\int_a^\infty f(x) \, \phi(x) \, dx = \int_a^\infty e^{-ax} \, \frac{\sin x}{x} \, dx$ is convergent.

Q.12 Prove that
$$\int_2^\infty \frac{dx}{\sqrt{x^2 - 1}}$$
 diverges. (2017)

Sol. Here,
$$f(x) = \frac{1}{\sqrt{x^2 - 1}} = \frac{1}{x\sqrt{1 - 1/x^2}}$$

Take $g(x) = \frac{1}{x}$

We have, $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \lim_{x\to\infty} \frac{1}{\sqrt{1-1/x^2}} = 1$, which is finite and non-zero.

Therefore, $\int_{2}^{\infty} f(x)dx$ and $\int_{2}^{\infty} g(x)dx$ either both converge or both diverge.

But $\int_{2}^{\infty} g(x)dx = \int_{2}^{\infty} \frac{dx}{x}$ is divergent because here, n = 1. Hence, $\int_{2}^{\infty} f(x)dx$, i.e. $\int_{2}^{\infty} \frac{1}{\sqrt{x^{2}-1}} dx$ is also divergent.

Long Answer Questions

Q 1. Test the convergence of following integrals.

(i)
$$\int_0^1 x^{m-1} (1-x^{n-1}) dx$$
 (2002) (ii) $\int_0^\infty x^{n-1} e^{-x} dx$ (2005)

Sol.

(i) When $m, n \ge 1$, then the integrand is finite for each value of x, where 0 < x < 1.

Hence, the given integral is convergent.

When m, n < 1 then the integrand has infinites at x = 0 and x = 1, these points are the points of infinite discontinuity.

Let $a \in (0, 1)$, then we have

$$\int_0^1 x^{m-1} (1-x^{n-1}) dx = \int_0^a x^{m-1} (1-x)^{n-1} dx + \int_a^1 x^{m-1} (1-x)^{n-1} dx$$

At x = 0

First, we consider $\int_0^a x^{m-1} (1-x)^{n-1} dx$ has infinite discontinuity when m < 1.

Let
$$f(x) = x^{m-1} (1-x)^{n-1} = \frac{(1-x)^{n-1}}{x^{1-m}}$$

and
$$\phi(x) = \frac{1}{x^{1-m}}$$
.

Now,
$$\lim_{x \to 0} \frac{f(x)}{\phi(x)} = \lim_{x \to 0} \frac{\frac{(1-x)^{n-1}}{x^{1-m}}}{\frac{1}{x^{1-m}}} = \lim_{x \to 0} (1-x)^{n-1}$$

But
$$\int_0^a \phi(x) dx = \int_0^a \frac{1}{(1-x)^{1-m}} dx$$
 is convergent if $1-m < 1$, i.e. $m > 0$.

Hence,
$$\int_0^a f(x) dx = \int_0^a x^{m-1} (1-x)^{n-1} dx$$
 is convergent for $0 < m < 1$.

At
$$x = 1$$

The integral $\int_a^1 x^{m-1} (1-x)^{n-1} dx$ has infinite discontinuity when n < 1.

Let
$$f(x) = x^{m-1} (1-x)^{n-1} = \frac{x^{m-1}}{(1-x)^{1-n}}$$
 and $\phi(x) = \frac{1}{(1-x)^{1-n}}$

Now,
$$\lim_{x \to 1} \frac{f(x)}{\phi(x)} = \lim_{x \to 1} \frac{\frac{x^{m-1}}{(1-x)^{1-n}}}{\frac{1}{(1-x)^{1-n}}} = \lim_{x \to 1} x^{m-1} = 1$$

But
$$\int_a^1 \phi(x) dx = \int_a^1 \frac{1}{(1-x)^{1-n}} dx$$
 is convergent if $1-n < 1$, i.e. $n > 0$.

Hence, integral $\int_a^1 x^{m-1} (1-x)^{n-1}$ is convergent if 0 < n < 1.

Therefore, the given integral is convergent for m, n > 0.

(ii) When n < 1, then the point x = 0 is a point of infinite discontinuity of $f(x) = e^{-x}x^{n-1}$.

So,
$$\int_0^\infty e^{-x} x^{n-1} dx = \int_0^\alpha e^{-x} x^{n-1} dx + \int_a^\infty e^{-x} x^{n-1} dx$$
, where $\alpha \in (0, \infty)$

At x = 0 First, we consider $\int_0^a e^{-x} x^{n-1} dx$.

Let $f(x) = e^{-x}x^{n-1}$ by μ -test,

$$\lim_{x\to 0} x^{\mu} f(x) = \lim_{x\to 0} x^{\mu} e^{-x} x^{n-1} = 1, \text{ for } \mu = 1 - n$$

Hence, $\int_0^a e^{-x} x^{n-1} dx$ is convergent if $\mu < 1$ and n > 0.

At $x = \infty$ Now, we consider $\int_a^\infty e^{-x} x^{n-1} dx$.

We know that, $e^x > x^{n+1}$, $\forall n > 0$

$$e^{-x}x^{n-1} > \frac{1}{x^2}$$

But $\int_0^\infty \frac{1}{x^2} dx$ is convergent.

Hence, $\int_0^\infty e^{-x} x^{n-1} dx$ is also convergent for all n > 0.

$oldsymbol{Q}$ 2. (i) State and prove Dirichlet test.

(2005)

(ii) Show that the integral $\int_0^\infty e^{-ax} \frac{\sin x}{x} dx$, $a \ge 0$ is convergent. (2000)

Sol.

(i) Statement If $\phi(x)$ is bounded and monotonic for $x \ge a$ and $\lim_{x \to \infty} \phi(x) = 0$ and $\int_a^b f(x) dx$ is bounded as b takes all finite values, then $\int_a^\infty f(x) \phi(x) dx$ is convergent.

Proof Since, $\phi(x)$ is bounded and monotonic for $x \ge a$, therefore $\phi(x)$ is integrable in (a, b), where b is any number greater than a.

Now, using second mean value theorem, we get

$$\int_{b_1}^{b_2} f(x) \, \phi(x) \, dx = \phi(b_1) \int_{b_1}^{\eta} f(x) \, dx + \phi(b_2) \int_{\eta}^{b_2} f(x) \, dx, \qquad \dots (i)$$

where $\alpha < b_1 \le \eta \le b_2 < b$

Also,
$$\left| \int_a^b f(x) \, dx \right| \le A, \ \forall \ b \ge a$$

where, A is any positive number, since $\int_a^b f(x) dx$ is bounded for $b \ge a$.

Thus,
$$\left| \int_{b_1}^{\eta} f(x) dx \right| = \left| \int_{a}^{\eta} f(x) dx - \int_{a}^{b_1} f(x) dx \right|$$

;

$$\leq \left| \int_{a}^{\eta} f(x) dx \right| + \left| \int_{a}^{b_{1}} f(x) dx \right|$$

$$\leq A + A$$

$$= 2A$$

$$\left| \int_{b_{1}}^{\eta} f(x) dx \right| \leq 2A$$

In the similar way, $\int_{\eta}^{b_2} |f(x) dx| \le 2A$

Again, $\lim_{x \to \infty} \phi(x) = 0$, there exists $b_0 : |\phi(x)| < K$ when $x \ge b_0$, where K is any positive number.

New, if $b_1 \le b_0$, $b_2 \le b_0$, $|\phi(b_1)| \le K$ and $|\phi(b_2)| \le K$ Hence, from Eq. (i), we get

$$\left| \int_{b_{1}}^{b_{2}} f(x) \phi(x) dx \right| \leq |\phi(b_{1})| \left| \int_{b_{1}}^{\eta} f(x) dx \right| + |\phi(b_{2})| \left| \int_{\eta}^{b_{2}} f(x) dx \right|$$

$$\leq K \cdot 2A + K \cdot 2A$$

$$= 4KA$$

where, 4KA is arbitrary positive number.

Hence, $\int_a^{\infty} f(x) \phi(x) dx$ is convergent at ∞ .

(ii) See the solution of Q. 11 of Short Answer Questions.