Chapter Eight

PLANETARY MOTION

'0) Important Points from the Chapter

1. Newton’s Law of Gravitation Every particle of universe attracts
every other particle with a force proportional to the product of their
masses and inversely proportional to the square of their distance

" apart. )
Suppose, two particles of mass m,, m, are distance r apart, the force of

attraction F between them is given by F = m, where G is called
r

gravitational constant or universal constant.
This law holds in the case of the motion of all planets in the solar
system, )
The motion of the Earth about Sun or that of satellites about the
planets are all take place under the influence of inverse square law and
the paths described are known as planetary orbits.

2. Orbits Described under Inverse Square Law Suppose, a particle
is moving under central acceleration /7%, then the planetary orbit will
be a conie section.

For this, there are three cases arise

If ¥ < 2—“, then orbit is an ellipse.
r

Ifo®= 2”, then orbit is parabola.
r

and ifv*> E!-i’ then it is a hyperbola.
r

where, vis the velocity of the parﬁcle, r is the distance of the particle

from the centre of force and u is a constant (absolute acceleration).
(2010, 08, 06, 05, 02, 01)

3. Kepler’s Laws of Planetary Motion Kepler deduced the following
laws of planetary motion
(1) Each planet describes an ellipse having the Sun in one of its foci.
(i) The radius vector drawn from the Sun to the planet describes equal
areas in equal time. ;
(ii1) The square of the periodic times of the planets are proportizonal to
AP,

T
(2017, 13, 06, 05)

the cubes of the semi-major axes of their orbits, i.e. T2 =
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4. Disturbed Orbits When a pﬁarticle is deseribing an elliptical orbit, it
may happen that at some points of the path it receives an impulse so
that it describes another path. An alternation in the strength of the
centre of force will also give an alternation in the path,

This change in path is called disturbed orbit, To obtain the new orbit,
we will have to know that how the major axis has been altered in
magnitude and position, what is the new eccentricity.

<f)Very Short Answer Questions

@ 1. A particle describes an ellipse under a force % and has a
r

velocity v at a distance r from the centre of force, show that

32
its time period is E(E—VJ . (2003, 1999, 96)
. rC
Sol. As we know that, v =p (»2”—1)
r a
#2 1_1_2 & '(2 vz]'l
= —=— =E———=g=2—-—
L r a a r w r R

If T be the time for describing the ellipse by the particle, then
_Areaofellipse  2rab _ 2ma®?
B hI12 - .‘s;pb?‘fa gt
wliz 7T
"W
on {2 %) T
= _\/: ——— J Hence proved.

Q g/ Find the periodic time of a satellite moving around a planet.
(2006)

Sol. As the laws similar to those of Kepler’s laws hold for the planets and

their satellites.

. Perlodic time of a satellite moving around a planet,
2nab 2nab 2na

' r“l——
"W n Ay

Cl
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b Short Answer Questions

_F 5 it
(distance)”
is projected with velocity V at a distance R, show that its path
is a rectangular hyperbola, if the angle of projection is

@ 1. A particle moves with a central acceleration =

sin~? v 2“ .. (2005, 02, 1990)
VR(V? = 20/R)

Or If the central force varies inversely as the square of the
distance from a fixed point, find the orbit. (2001)

Sol. When the path is rectangular hyperbola, we have

= (2+2)
vi=p -+ =
roa

Given that,v=V and r=R

2 1 8 U :
Ve *+_) ye__K
: (R a _=> R a ®
As b =up and h =,/u x Semi-latus rectum
u b°
We have, —=Vp
: a
2
= . V2® = V2R%sin? ¢ ... (i)
a

where, ¢ is the angle that the direction of projection makes with radius R,
In the case of rectangular hyperbola, & = a.
= Bq. (il) becomes pa = VZR? sin® ¢

2

.2 Ha K
=2 sin Sgin MELE e
¢ V2R2 VQRQ(VB _ 2“’)
R
= sin ¢ = — a T
VR(Vz “g_g)
R
= ¢ =sin™" H

12
2u
VR[VZ- )
( R

@ 2. Let v; and v, be the linear velocities of a planet when it is

respectively nearest and farthest from the Sun, prove that
(A-e)vy={1+e)v,. (2002, 1999, 96)
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Sol. By EKepler's law of planetary
motion, each planet describes an ellipse
having the sun in one of its foci. Y23

Let AA’, major axis =2a and C is the
ceritre of ellipse.

We know that, CS =aeand CA=CA’ =q
Here, A and A’ are the nearest and farthest positions of the planet.

Flanet

Now, SA=CA-CS=c-ae=a(l-¢
and SA=CS+CA =ae+a=a(+e
As we know for the ellipse, v2=p (g —-]i)

r oa

when the planet is at A, we have

2 1 o2 il 1+e
Lf:u[éz_gjzula(l"e)_EJ=%°(1—eJ | i

and when the planet is at A" we will have

a_ [2 17 | 2 __1"]_& 1-e
Uz_u[SA' a_l“u{a(1+e) aJ_a.l-i-e
__012_=(1+e)2

———= {(l-en=01+u Hence proved.

Q@ 3. Show that the velocity of a particle moving in an ellipse
about a centre of force in the focus is compounded of two

constant velocities, % perpendicular to the radius and 25

perpendicular to the major axis. N (2005)
Sol. Let vbe the velocity of the particle at
the point P(r, 8) moving in an ellipse about a ue iR
centre of force in the focus S. _ h [P__ v
2 1 %
2 ; Bk
D) e
= a g QO°= N
where, SP = r and ¢ is the semi-major axis A\ S M c H JA
of ellipse. -
ub*
Also, h2;pl=—=ua (1L -e%
a .
1 . "
= -&—:%2—(1—622) | (i)

Now, the equation of the ellipse taking S as the pole is

I
—=1-ecosl
r
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=5 1 =% (1 —ecos 6) [+ A% =p]] ...(Gii)
r :

On putting the values of s and . from Egs. (i) and (iii) in Eq. (), we get
a r

v2=&2—[2(1—ecosl3)—(l—ez)]
h2

= ' v=%\f(1—2ecose+ e?) ..Qv)
The resultant of two velocities, one % along PN (perpendicular to the radius

vector) and the other L;f along PR (perpendicular to the major axis)

T T o5 . :
_m u% pope B _
= ?+?+25.ECOSRPNHE\/1+32+2€COS(1T-—B)

= % Y1+ —2cos0 =v [from Eq. (iv)]

Therefore, vcan be compounded of two constant velocities % perpendicular

to the radius and —l;f perpendicular to the major axis. Hence proved.

Q 4. Describe Kepler’s third law of planetary motion. (2018)
Sol. See the Part IT of Q. 3 of Long Answer Question.

(f)Long Answer Questions

@ 1. A particle is moving under central acceleration %,

r
show that its orbit is a conic section and differentiate
between three cases that arise. (20086, 05, 02, 01)

Or A particle moves in a path so that its acceleration % is
_ _ "

always directed towards a fixed point. Show that path is

a conic section and distinguish between the three cases.

(2017)

Sol. Given, P ='~H—2, where P is acceleration at a distance 7 from the centre
r -

of force.
Now, differential equation of the central orbit in the pedal form is

Rdp_p , R dp_p
2
r

p3-dr_~ p® dr
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A2 M
= —dp=-5dr
o P=g
On integrating, we have
2
vl 2R, 4 e U=E}...(i)
P "5

Now, there are three cases arise
Case I On comparing Eq. (i) with the pedal equation of ellipse

2
b—z = 2—0 —1, we get
P r
2
L FEL W P | [from Eq. ()]
b a -1 Q
O .G
r o a r
Case I1 On comparing Eq. (i) with pedal equation of parabola, we get
pr=ar
1 1 R 2u A
b _—— — T —— T ——
¢ ar 1 a O
=y ' A=0
- From Eq. (1), we get v* === ...(ii1)
r
Case 111 On comparing Eq. (i) with pedal equation of hyperbola
2 2
E’§=2—a’+ 1, we haveh—2=E'=14~ A=t
b r 6 a 1 a
Therefore, from Eq. (),
1)2'=2-E£+}i =4 vz>2—1'-l— ...(dv)
roa r

Hence, from the above relations given by Egs. (ii), (iii) and (v), we

. 2 e .
conclude that if v2 < —"l, orbit is an ellipse.
r

If v = Zu’ then orbit is parabola and if % > %, then orbit 1s hyperbola.
B r

Q@ 2. A planet is describing an ellipse about the Sun as focus,
show that its velocity away from the Sun is greatest
when the radius vector to the planet is at right angles to

21ae

T«.}l—ez”

where 24q is the major axis, e is eccentri¢ity and T the
periodic time. | ©(2001)

the major axis of the path, and that it then is
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Sol. The velocity of a planet P describing an ellipse about the SunSas a

focus 1s resultant of two constant uelh

velocities, % perpendicular to the radius

vector 8P and % (perpendicular to the o

major axis). Therefore, the velocity of -
the planet away from the Sun, i.e. along / wlh
SP is the sum of resclved parts of the ;

two components of velocities mentioned

above but the component velocity %

perpendicular to SP has no resolved
part along SP.

Hence, the velocity say V of the planet away from the Sun is given by
= %’-L— cos 8, where 8 is the angle that SP makes with the perpendicular

to the major axis. ‘
Now, V is maximum, when ' =0,i.e. When the radius vector SP is

perpendicular to the major axis.

N2 /o, V2 .
S Maximum value of V = & ﬂ o L;a r._. B2 = &-I
h b [ e

2na |_q 2na

72
=e L = e\/i =@ o = ]
U a(l - e*) Jall - &) Ty1-é° !_ Ju J

@ 3. State the Kepler’s law of planetary motion and obtain
the more accurate form of third law. (2013).

Sol. Part 1 Statement Kepler deduced the following laws of planetary
motion )

() Each planet describes an ellipse having the Sun in one of its foci.
@) The radius vector drawn from the Sun to the planet describes equal
areas in equal time.

@iii) The square of the periodic times of the planets are proportional to the
) 4'1'52 3
A

i
Part II Kepler’s third law is based on the supposition that Sun is fixed
or that the mass of the planet is neglected in comparison with that of Sun.
A more accurate form of third law can be obtained as follows

Proof Let S and P be the mass of Sun and any of its planet respectively
and v be the gravitational constant. Then, by Newton’s law of gravitation
S P

r2

cubes of the semi-major axes of their orbits, i.e. 7% =

the force of attraction between Sun and planet will be ¥ - , where ris

the distance between the Sun and planet.
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- Acceleration of the planet will be o = - % {towards Sun)
r

and acceleration of the Sun will be § = Y—I: (towards planet)
: r

.. Acceleration of the planet relative of Sun is

-oc-i-B:[T(S-FPl):B— [where, L =v (S + P)

r’ r

Thus, the periodic time of the planet is given by
2na®? 2 4n%?

Pl e R, BB T, (@
JYES + P) Y8+ P)
Similarly, for the planet of mass P, with semi-major axis «,
The periodic time '
B ol (i)
L YS+R)

From Eqgs. (i) and (ii), we get
7 (8+P)\d° S+PYT® o
——=fe—— L | = S L .
7 \s+P)d T \S+R)TE &
Similar relation holds for the planet of mass P and its satellite of mass p,
if d be the mean distance of satellite from planet. '

The periodic time is

342
per, BIR (i)

—\h'(P + D)

From Eqgs. (i) and (iii), we get ,
T o* P+p (8+PYT? &
R = =25 F
t d S+ P P+plt d

which is more accurate from of Kepler’s third law.

@ 4. Discuss the tangential disturbing force. (2013)
Or What are the effects of tangential disturbing forces on
the elliptical orbit? (2015, 07, 1992) _
Sol. Let APA’ be the path of a particle P

moving about a centre of force at focus S
and let H be the other focus.

Now, when particle reaches at point Pon
its path, its velocity vis changed to v+ dv,
the direction being unaltered.
Let 2a and 2a’ be the major axes before and. after disturbance
2 _ 2 1 ;
v —u{é—ﬁ——z} | ...(})
2 1

and @+ dv)i=p {§ - E} . ...(11)

A’
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Since, the direction of motion is not changed at P, the new focus lies on
PH and let H” be its new position

HH = H'P-HP=(H P+ SP)- (HP + SP)
=2a" -2a~=2 (" - a) ...(111)

On differentiating Eq. (), we get 2080= 1. 5a
a

Since, SP is constant for these instantaneous change.
Then, increment in semi-major axis,

Ry g2
Sa = %ﬁ_ i)
H M HH sin H
Now, tan HSH’ = =
AR SM- SH+ HM
__ WasinH _ 28asin H
2a0e+ HH cos H 2ae
Since, HH =2(a" ~ a) = 28q is small. i
= tan &Y = QERiE H |
ae .
So, the small angle 8% through which the major axis moves is given by
da sin H
Sy =¢8I 7 . (V)
ae
. 2va ! .
= - ' ¥ = T sin H -8v [from Eq. (v)] ...(vi)
€

Since, the direction of motion at P is unaltered, the perpendicular pis
unaltered at P. Therefore, taking logarithmic differential of the equation

h = pv, we have
&k _dv

| e ... (vii)
. (4]

But h2=pa (1 - &) | ... (viii)

Therefore, 2h8k =pda (1 - ¢%) —ua-2ede |
=  ua-2ede=2udva® (1 - ) - —-2-22 A2 [from Egs. (iv) and (vii)]
= 2udva’ | %8;2 pa (- [from Eq. (viii}]

2
_dv1-¢ a—p ...(ix)
v e 1)

which gives the increase in the value of the eccentricity.
o0 a®?, by taking logarithmic differential,

=

8T _3da _ 3uadv

T 2a T}
From Eqs. (iv), (vi), (x}, (), we can find various changes due to disturbance.

Since, the periodic time 7’ =

we get

{from Eq. (v)] ...(x)



