Chapter Nine

SECOND FUNDAMENTAL

e L D

FORM AND CURVATURE
OF SURFACES

() Important Points from the Chapter

- Second Fundamental Form A tensor d op 01 the surface is defined as
dog = Ny op Which is called the second fundamental tensor of the
surface and the quadratic form dyp du® duP is called the second
fundamental form of the surface.
. Gauss equation is ¥up = QN 2
. Weingarten equation is N*, = - dwg % .
. Normal Curvatures The section of surface by the normal plane p' is

called ‘normal section’ and curvature of normal section at a point is

called the ‘normal curvature’ at that point and it is denoted by x,.
1

Normal sectiohN’ =p'

b!

The section of surface other than the normal plane is called the
oblique section, 0therw1se the curve is called normal section. The

principal normal p' to the normal section is parallel to the surface
normal N°. (2016)

Principal Directions and Principal Curvatures

(1) Principal directions The normal section of a surface through a
given point having maximum or minimum curvatures at the point
are called prineipal sections of the surface at that point and the
tangent to these sections are called principal directions at the point.

1) Principal curvatures The curvature of the principal sections of a
surface through a given point, i.e the maximum and minimum
curvatires at that point are called principal curvatures at that
point and their corresponding radius of curvatures are called
principal radius of curvatures.
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6.

10.

11.

12.

13.

14.

15.

Mean Curvature The arithmetic mean of the principal curvature x;
and x, at a point is called the mean curvature at the point and is

denoted by M,

: 1 1

€. M== (5 + k) == g%d .
1.€ 3 (x; + %) 2 8 CGup (2014)

Gaussian Curvature The product of the principal curvatures x; and
Ky at a point is called Gausman curvature at the point and is denoted by X,

_ Gudyy— d12

g 811822 8'12 (2014)
Umbilic Point A point on a surface is called an umbilic point, if at.
each point, we have d,g = Ag.g.
Minimal Surface If the mean curvature of a surface is zero at all
points, then the surface is called a minimal surface.
Hence, the surface will be minimal, if

M=0=1+K,=0
= g“ﬁdaﬂ =(), at every point of the surface. (2014, 12)
Developable Surface The surface, for which the Gaussian curvature
K is zero, called the developable surface.
Hence, the surface will be developable, if

Kk=0=d=0=djydsy — (dn)° =0.
'Conjugate Directions Let P be a point on surface ¥ =« (#*) and P
and @ are two neighbouring points and PR be a live parallel to the line

of intersection L. The limiting position of the directions P and PR as @
tends to P, are called conjugate directions at P.

Lines of Curvature A curve on a surface is called a line of curvature,
if the tangent at any point of it is along the principal direction at that
point.
The equation of the line of curvature is

e g dpsdu’du’ =0 or (dog — k,g,g) duP =0
where, &, 1s one of the principal curvature.

|
Asymptotic Lines The directions which are self-conjugate, are called
the asymptotic directions and the curves whose tangents are along-
asymptotic directions, are called the asymptotic lines. . (2012) .

Null (Minimal) Lines and Isometric Lines A curve on a surface of:
zero length is called null lines or minimal lines. Therefore the
differential equation of the null lines is g ydu®duf =0 which is:
obtained by equating to zero the square of the line element.

Some Important Theorems

(i) The necessary and sufficient condition that a surface be plane is!
that daB =10,

(i1) The necessary and sufficient condition that a surface be sphere is
that dOE.B = Cgctﬂ'

1.e. K=¥;Ky =
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(ii1) The surface, for which Gaussian curvature % is zero, is called
developable surface.

(iv) The necessary and sufficient condition that the parametric curves
at a point be along the lines of curvature are that

d12—0 glz—-oand dll?'-' 22
&t gzz

(v) The normals to any surface at consecutive points of one of its line of
curvature intersect.

(vi) Rodrigue’s formula A necessary and sufﬁment condition that a
curve on a surface be line of curvature is that dN* + x_d® =0 at
each of its peints, where x,, denotes the normal curvature
which is known as Rodrigue’s formula.

(vii)) Dupin’s theorem The sum of the normal curvature in two
orthogonal directions is equal to the sum of the principal curvatures
at that point.

(viii) JoachimsthaVs theorem If the curve of intersection of two
surfaces 1s a line of curvature on both the surfaces, then the
surfaces cut at a constant angle.

(ix) If the directions given by Fygdu” duP =0 are conjugate, then
d°P FPg =0.

(x) The necessary and sufficient condition that the parametric curves
at a point of a surface be conjugate is that d,, =0.

(xi) The lines of curvature at a point of a surface form an orthogonal
conjugate system.

(xi11) The - necessary and sufficient condition that two asymptotic
directions be orthogonal at every point of the surface is that the
surface be minimal.

(xiii) The osculating plane at any point A an asymptotic line is the
tangent plane to the surface.

(xiv) At a point on a surface where the Gaussian curvature is negative
and equal to &, the torsion of the asymptotic line is + J—qk

(xv) At a given point of a surface there are two null ines and both are

imaginary. .

(xvi) The necessary and sufficient conditions that the parametric curves
are null lines are g;; = 895 =0, g2 #0.

(xvii) When the parametric curves are null linds, then the principal
curvature are given by ghk> — 2g12dt2k,; - (dlld'gg di) =0 and the
lines of curvature are given by dy; (du!)® - 4::!22(1:1311.2)2 =0.

(xviii) The null lines on a minimal surface are conjugate.
(xix) The metric has the form ds® = ! (du)? + v2(du?? where v* are
functions of #”, the parameters are isometric.

xx)d, g . — d'm,, g =01s known as Mainardi-Codazzi equation.

af, ¥
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cf)Very Short Answer Questions

Q@ 1. Find the formula for normal curvature in terms of
fundamental magnitudes. (2012)

Or Find the equation for normal curvature in terms of
fundamental magnitudes.

Sol. Let ¥ =¥ (ua) (i=1,2,3,0.=1,2) be the equation of surface and p be
any point on the surface whose parametric coordinates are u®. Let X,
represents the curvature of the normal section, it will be positive when the
curve is concave on the side towards which N points out,
Then, « = k0,00 =, N o kP =N
: K, = N'g"
Again, we have ‘

i G 0w du® 9% du® gyl L o2 dwt

ds  Ju*.ds ouP ds ds  ou® ds?

a%  du®duP . o¥ d%®

+ N ——.

Kk, = Nix” = N :
" uduf  dsds ou® ds®
_ du® duP _dg du*duP
P gy Tds ds?
dop dudu?
= K, = 7
guﬁdu du

which is the required equation for normal curvature.

@ 2. Prove that the normal curvature in a direction perpendicular
to an asymptotic line is twice the mean normal curvature.

Sol. Let du® be an asymptotic line, then the normal curvature in the
dopdu®duf .
gagdu“duﬁ -
Again, by Euler’s theorem, we have :

K, =0=%; cos®y + kysin? y (i)
Now, let x be the curvature along direction perpendicular to the
asymptotic line, then Euler’s theorem gives

K =1 cos® (90%+y) + K, sin? ©0°+y)
=1 sin2w+1czcoszw ...(13)

On adding Egs. (i) and (i1), we get

K+ K
K=K1+K2:2( 12 2]

K =2 (mean normal curvature at P)

direction du® is given by x, =




B.Sc. (Third Year) : MATHEMATICS Paper3 127

Li)Short Answer Questions

Q__l,/C/alculate the fundamental magnitude of the surface

x =ulcosu? x*=ulsinu? x%=f@')+cu? (2017)

Sol. Wehave,xl=u_1 cosu?, x> =u' sinu’®, & = f)+ cu’?
Bxl—cOsu,alxg-smu alxﬁ f
9,%" =—u'sinu?, 9,97 =u'-cosu?, 9.,0% =¢
3,0,x' =0, 9,0, = 0 alaxﬁ‘ i
alaxl_—smu 919,57 = cosu?, 8,0, =0

3q04% =—u’ cos u’ 3282 =—u' sin u?, 9,0,%° = 0
g1 —(cos u2)+s1n u + (f Y =1+ () [ sin®x+ cos?x=1]
gig=—u' sinu?cosu? + ulsin u®cosu? + of = ¢f’
and Eoo = @) sin u® + W) dos®u? + (% = @) + &
8= 8180~ &=L+ ()] + - (f )
= @+ @+ ()R @+ PP - )

=W [ Y]
N XXX, _w(fcosu’,- fsinu? 9
,JE 1-\/62 £ (f) )2

" f cos u?® fsmu” u?

c

Thus, dll = - uf

Ve + ()

N]_ =

d _ f'sin u? cos u% - f sin u? cosu2—c__ c
ke \/Cz ’ 12 2 2
. +{f) v+ (f)
do = u'f cos®u’+ ulf sin®ul+0_ ulf
22 =

@ 2. Calculate the fundamental magmtudes and normal to the
surface 2z = ax® + 2bxy + by? taking x, y as parameters.

(2018, 16, 14)
ax? + 2bxy + by?
2
The parametric equations are x=x, y= ¥, 2 = ax® + 2bxy + by~

Here, vl =x, u?=y

dx dy oz ) [ ax + 2by) ;
X = ; 4 1,0, ———>|=(1,0,gx+ b
' (au‘ 3’ 3 2 LE, G o)

Sol. Given that, z=
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ox dy 9z 2bx + 2by ’
and XZ:(auzyauzrauz)z(O: 1:—_5'__]=(1,0, bx + b:}’)
Now, (3;0:%,39:9:%,8:9,2) = 0,0, a),
(9199%, 9495, 9,32) = (0,0, b)
and  (0505%, 9395y, 9,042) = (0,0, b)
Xy x X, ={- (ax + by), — (bx -+ by), 1}
Also, g =X; XX =1+ (ax + by)?
E12=X; XXy =0+ 0+ (ax+ by) (bx+ by)
8o =Xy xX,=1+ (bx+ E:ry)2
Now, 8= 811802 — (812)2
= [1+ (ax+ by)*] [1 + (bx + by)*| — (ax + by)? (bx + by)?
=[1 + (@x+ by)* + (bx + by)?]
Ve =1+ (ax+ by)2 + (bx + by)7]
Nio X xX, [ (ax+by) Gxiby) 1]

XXl | 48 48 J&)

Also, N1=~£“3j—§(?§’2,1v2=n(bx\éby),zv3=é
Now, dyg =N 3,0p% . [ o, B=1,2,...]
a aQ
diy =N"3,9x+ N?2,0, y+ N*3,3,2 zo+0+_E=bE b
djp=dy = Naagx+N832y+N 0;0,2=0+0+ §=§
2l dyp=N'00px+ N33, + N33@22m0+0+_}§:%

Hence, d,g = [d);, d)5,dos} = L/_ «f— J__J

@ 3. Prove that Gauss formula xfdﬂ =dzN E
‘o
e Bp.LB
Taking covariant derivative w.r.t, u”, we get

T B+ 2y = g =0 7 Bagy =0] D)
On taking cyclic permutations o, Band vy, we get

x’ﬂa af{+x1‘3afﬂ 0 ...(1D)

and x‘.}ﬁ x’ '{'xL x’aB-O . "(iii)

(2009, 2000, 1993)

Sol. We have, — =8aqp = Jfa'xfg;'gaﬁ
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Now, adding Egs. (ii) and (111) and then subtracting Eq. (i), we get
2.9{:0!;5 vaY =0 ke faﬁ=3%a]
x‘aﬁ fr = 0 -

110y
.%&_.
|.....
i

g = Agg N - (1v)
where, A3 is to be determined.
Now, N*- 2y = A N'N [ N“N‘:ld@:N‘-x‘aﬁ]
On putting this value in Eq. (iv), we find that
' x;ﬁ =duy N ' Hence proved.

@ 4. State and prove that Weingarten equation or formula.
(2008, 06, 04, 1999, 92)

Sol. Statement If N* are components of unit normal vector N to the
surface, then the derivatives of the normal vector N is given by

.N ) =— d g ?‘th . B
Proof Since, N ‘ are components of umt normal vector N to the surface,

we have V' LN f=1, taking covariant derivative of this relation with
respect to u® , we get

Ni o V' + N°N*, =0, ie. N, NP =0
which relation shows that N i "o 18 orthogonai to N'. Hence, it lies on the

tangent plane to the surface, therefore N ‘.« can be expressed on linear
combination of s(B=1,2).

Thus, we may write N‘ = Bf xiB -..(i)
where, the expression for BB is to be determine. Taking inner product on
both 51des of Eq. (i) with &, and using the fact that
N‘ :3 ==dyy andx’ x‘ v = 8pyp We get
dwr =B, g By
Contracting above equation by g, we find that
~ dgy &7 = BE 8]
= B,i:—dm,g"/ﬁ:Bg:— m,g‘“ﬁ
Substituting this value of B in Eq. (i), we get
N o=—dy, g% 2 B |
which is known as Wemgarten equation.

@ 5. Prove that, if at any point of the surface, there exists two
principal directions, they are orthogonal. - (2003)

Sol. The dlf.ferentlal equation of the principal directions at a point P of a
surface is given by

e g dgsduTdu® =0 - D)
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whose equation is quadratic, so there are, in general two principal
directions at each point of the surface. But there may be points on the
surface for which normal curvature is independent of the direction of the
normal sections. In such case of Eq. (i) does not hold.

Excluding this particular case, we may write Eq. (i) as

Py du'du® =0 ... (i)
where, Py = e Boyps |
Now, Psg® = a“ﬁgmdﬁag”a = s“ﬁdﬁaﬁg

Thus, condition for orthogonality of two directions given by Eg. (i) is
satisfies.

Hence, the two principal directions are orthogonal.

Q 6. Find the principal directions and the principal curvature -Qf
thesurfaces x' =a(u +v), x> =b(u -v), x*=uv.  (2010)

Sol. Here, & =a(u+ v),x*=b(u—1v), 2* = uv

¢ faxt ax® a2)
X = = » = 3 3 ES
- 17 % [au’au -l I
o (o 92 98
X = = F = y U,
27 v [av’av v (% b )
and g = 9,0, % = (30" 0,9, %%, 8,3,22) = (0,0,0)
auau—ll"llﬁll s Vv e — WM
B _ '
a ’3 =8132:€ - (alale, alazxz, 3132:1:3)=(0,0,1)
dudv
o2 :
aval):aZa?xz = (aﬁalesaZazxzs a2a2xa) = (03030)

gll =X1‘Xl =a2+ bz"i" U2

and g22 =X2-X2=02+ b2+ Hz
Now,  g1185 - (g9)°=(a®+ b*+ 1P (@®+ b2+ u?) - (a? = b2 + uv)
= JE=1X;-X,|=y@®+ b2+ 0% (% + b2 + u) — (@® + b + uv)
Also, gl =822 @*+ 8+ u?
g g
g2z g :_gl_gz_(az—b2+ ou
g g

22 &y _ @+ b2+ v
g 4

and g
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The components of unit normal vector is
Nz X; xX, =rb(u+ v) a@—u) —2ab]
X, <X | V& ' Vg e |
Now,  dus=N0,2,%
dj; =N'9,0,% + N%,9,2% + N39,0,4° =0
2ab

dig=dy = N0 3" + N%0,00° +N39,0,08 =— 22

Vg

and dog= N30 + N30 + N29,0.4 =0
2 . 4a2b2
d=dydyg~ (dy)" =~

Then, the principal curvature x, of the surface are given by

Ki—Kngaﬁde-%—g«:O [+o,B=1,2]
g e
d
= X7 — Kn '(811d11 + 2g12d12 * g22d22)+ E =0

0

2 4ab (ag —ifP qu 4a%p?
T K —- =

n— Kp

V& g g°
= o 8% ~dabyg (@® - b7+ uv) = x,-4a%*=0
Hence, the principal curvatures are the roots of

g2 —4ab g (@® - b* + w) ¢, - 4a%?=0

where, g=(a?+ b%2+ v?) (a?+ b2+ u?) —(a?- b+ uv)
Also, the principal directions are given by
€08 Sy dﬁﬁdquuE =0

(81y dos — 8o,dh5) du'du® =0 [c et =e®=0,e%=-¢M =1]
= (811891 — 8o1d:1) (du1)2 + (81192 — &21d11)
- dutdu® + (gyodys ~ oot ) (duPHZ=0
=> (&11d91 — 821841) (AU)* + (g),dpy — Bondhy)
' du dv + (8129, — gapdiy) (dv)® =0
, [ —2ab 2ab
= (a®+ 6%+ &)[ ) (d)®+0+ (@*+ b2+ ud [—-—) (dv)? =0
Ve Vz
= @+ b2+ ) du == (a?+ 0% + v
du du

shy
(\/a2+ b2 1 uz)yz (Ja2+ 62+-02)”2

On integrating both the sides, we get

sinh™| % |=tgnh!-—Y i
Jal+ b? Jal+ b?

where, C is an arbitrary constant.
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Q 7. Calculate the fundamental magnitudes of the surfaces
A=au+ v), x2=b(u —v), x> = uy.
Q¢ Calculate the fundamental magnitudes of the surfaces
xt=a(!+u?), x> =b@! ~u?), x* =uly2 ‘ (2016)

Sol. From Q 6, the fundamental magmtudes of the surface are
g, =a”+ b%+ ¢ and g, = a%~ b% + wv

@ 8. State and prove Meusnier’s theorem for a surface of three
dimensional space. (2010, 06, 2000)

Or Establish a relation between normal curvature and oblique
curvature or sections.

Or State and prove Meusnier’s theorem. (2008)

Sol. Statement If x and «, are the curvatures of oblique and normal

sections through the same tangent line and 0 is the angle between those
sections, then x, =K cos@

Proof Let p be a point u* on the surface ¥ = (%) and x” be the
components of the curvature vector at P of the obligue section through P,
containing the direction du®.

Then, ¥ = wp' ...(1)
where, p’ are components of the unit principal normal vector to the
oblique section at P. Again, the unit normal vector to the surface at P is

the unit prmmpal normal vector of the normal section at P parallel to the
direction du®

Since, 8 is the angie between oblique and normal sections at P through
the same tangent Iine, therefore 0 is the angle between the vectors P and
N ie. PN* = cos®.

Now, taking inner product on both sides of Eq. (i) by N’, we have

KN = ‘N =KcosO
Again, ¥ N* = Normal curvature at P in the direction du®™

= Curvature of the normal section at P paralle! to the direction du®
= Kn W
Therefore, k, =« cos®.

@ 9. Find the radius of normal curvature of the section x = y of the
paraboloid 2z = 5x* + 4xy + 2y? at the origin. Also, find its

principal radii at the origin. (2012)
Sol. It is given that, 2z=5x2+4xy+2y2=>z= 5x” + 4;y+ 2y2 |
So, the parametric equations are '
x=x’y=yandz=5x2¥4azcy+2y2

where, x and y are parameters.



Here,

and

Also,
and

Now,
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ul =z, u’=y

X1=[8x dy az)z(l,o,y‘_xziﬂ)z(l,()jx-pzw

i T

X2=(ax ay _az)=(0}1,4x-;4y]=(0,1,2x+2y)

du®’ ou?’ gul
(010,%, 0,9, 3, 0,9,2) = (0,0,5),
(0,05%,0,05 ¥, 0;052) = (0,0,2)
(azazxs 8282-3'-” azazz) = (0,0’2)
X XXy = (- Bx+23), — @x+ 2y),1)
S =X - X;=1+0+ (Bx+2y)°
B12=X; Xo=0+0+ 2x+2y)- Gx+ 2y)
822=Xp X,=0+1+ @x+ 2y)?

At origin, x=0, y=01ie. ! = u>=0

Now,

=N

Now,

811=1,813=0, gop =1
X,-X;=0,0,1)
8= 8180~ (82)°=1x1-0=1
g=1=g=v1=1
Xy xX,

deg = N'9,0 %

diy = N'3,9,x+ N%9,9,y + N°9,9,2 =0 +
dip=dy =0+ 0+2=2

dop = N'9 8,2+ N%.,0,5 + N33,9,2

gy =2

At Origi.n., dll = 5, d12 L d21 = 2, d22 =3
Now, d = dy dps ~ (d1p)* =5x2- @2 =10-4 =8
Part I The normal curvature is

Now,

a1 B d g_ﬂ@ﬂ
" ___dulidu’ du _ off d.'.t: dx

" gupdu’duP gop du’ duP

dx - dx
w'=x, ul=y@x=1y)
1 2
@_:1,@_:1
dx dx

dul! du? du?

dx dx

K, =dj; (——) + 2‘512‘5 ek dzz[—"—

[oo,p=1,2,..]

0+1x5=5
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dut 2 9 du' du? du’® :
= &1 (E) + g1zgx“'a+ gzz[—d;J
_Ox1+2x2x1x1+2x1 11
S 1x1+2x0xIxl+1x1 2

Hence, radius of normal curvature is
k 2

""K,I_:H

Part II The principal curvature x,, is

K~ K, 8% d 5 + L

d
= K2~ X, (g''d;; + 2y %dyg + y¥2dg0) + E =0

K2 -K,(AX5+2x%0 ><2+1x2)+§’-=0

K-k, 5+2)+6=0
K2 — Tk, +6=0
1(,21—61‘:“—14:"+6=0
x,(k,-6)—1(x, -6)=0
(k,—6) (x,-1)=0

K =1Lx%x,=6

L

Hence, its principal radii at origin are F=land B, =

&=

Q 10. Define normal curvature and establish the relation between
i the curvature of normal and oblique sections.

Sol. Part I Normal Curvature The section of surface by the normal
plage p' is called ‘normal section’ and curvature of ‘normal section, at a
poizﬁ: is called the ‘normal curvature’ at that point and it is denoted by x,,.

Part II See the solution of Q. 8.

Q 11, Befine normal curvature and deduce the formula for normal
curvature in terms of fundamental magnitudes. (2016)

Sol. Part T Normal Curvature The section of surface by the normal
plaje p' is called ‘normal section’ and curvature of normal section at a
poiiit is called the ‘normal curvature’ at that point and it is denoted by x,,.

Part IT See the solution of Q. 1 of Very Short Answer Questions.

@ 12. Prove that at any point of the surface, the sum of the radii of
normal curvatures in conjugate directions is constant.

Sol. Let the lines of curvature be taken as parametric curves.
Then, B9 = 0, d12' = (),
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Again, let du® and 8u” be two conjugate directions through any point

Pu®).

Then, . dypdu®dub =0

= dyduldu’ + dooduBu? =0

Su! 7%

dyodu® dyy du'

The normal curvature x,, at Pin the direction du® is given by
o < Qepdutdub g (@ul)?+ dyy(dudy?

Sapdu®dub g (dut)?+ &oo(du®)?

Suppose that p; and p, are the radii of normal curvatures at Pin the
conjugate directions du® and §u.%, respectively.

—

= A (say) <)

- P, = 811(dui )z'*‘ gzz(du:)z (i)
dyy (du™)’ + dyo(du®)
and p, = &1 (aui)z'*' 822(515:): (i)
dy1 @u )"+ do,@Gu?)
On putting the values of 5z ,8u? from Eq. (i) in Eq. (iii), we get
Pym gudgz(duz)‘: T 899 dljl (dui )z
di1d59(du)" + dyy dfy (du')
_ g1 d5(du®)* + Zas0y (dut)’ (iv)
A1 dagldoy(du®) + dy, (du'y? -
On adding Eqgs. (ii) a;'ld (iv), we get i
_ B11802 + Zaothy;
PLTPg= d, d,,
which is independent of the conjugate directions du® and 8z~
" Pp +pg =Constant. , Hence proved.

Q 13. Find the normal curvature of the curves u'= asin 6, u%= acos 0
on the surface x! = ul, x? = u? x% = w)? - (u?)? at the origin

T
foro=—., 2011
7 ( )

Sol. For the given equation of surface, we have
0x' =1,9,22=0, 3,4 =24
9% =0, 3y22=1, 9,#° =~ 2,2
310, =0, 9,9, ¥%=0, 3,9, =2
0199 =0, 9,9,%° =0, 9,3,2° =0
0905%" =0, 99,2% =0, 3,0,%° =2

gll =1+ 4(u1)2, Blo=— 4u1u2, Eos=1+ 4(u2)2
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Atorlgm =0, u=0,g;=1, g5=0, gp=1
§= gugzz g2 =1

Now, N1=_—2y'~—, N2=2—u—
Jg Je

~ Atorigin N' =0, N*=0, N® =1

Hence, d; =2, di3=0, dyp=~2

From the given equation of curve on the surface, we have

1 7.2
%é———a cos 0, cfi—ue——asine

N® =

b
Je

Therefore, at8 = —, du’ J_a , du’ __a

6 do 2 d9 2
The normal curvature of the curve is given by
" d au’ d_uE
" _dgp du®du® 778 de
= gaﬁdu“du g- du® du” duf
P de do

At origin and in direction 8 = —g, we have

'{dul' 2 (du.‘?.\z
do ) "%\ o)
PR el SN, St [ dyp = 0,781, =0]

(du'”,  (du?)
811 gzzkde

4 4
@ 14. Prove that the origin is the umbilic point of the surface
t=u, x*=vand x® =u? + v (2007)
Sol. We have, X, = %—'ﬁ =(1,0,2u)
21 .
and X,y = % =(0,1,2v) and J ¥ =d,d;x =(0,0,2)
ov ov

kA = 3,0, = (0,0,0) and it =8282<xi=(0,0,2)
dudv dud
g1 =X, X, =1+4u”and g, =X, - X, =4uv
.g22 =X2‘X2 - 1 + 4U
and £= 8118z — (8" =1+ 4u” + 4

Also,
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= JE=IXI><X2I=-\/1+4U.2+4UE
1 X xX,| Jl + 4u? + 412
Now, - dyg = N'3,0,%

2
1+4u?+ 402
dip = dgy = N'9,9." + N%3;9,y2” + N33,9.,8 =0

dys = N2,0.0" + N28282x2+N38282f=\f1 e
+ 41" + 4p

At origin, u =v=0, g;; =1, 812=0, 835 =0 and at is clear that at origin,
dp 18 proportional to Zop-
Hence, the origin is the umbilic point of the given surface.

diy = N'3,9,8 + N%,0,2% + N33,9,48 =

@ 15. Define minimal surface and show that the surface

e’ cos x = cos y is minimal. (2012)

Or Define minimal surface and show that surface

z = log cos y ~ log cos x is minimal. (2012)
Sol. Part I Minimal Surface Ifthe mean curvature of a surface is zero at
all points, then the surface is called a minimal surface.
Part Il The surface will be minimal, if
= g®d,53 =0, at every point of the surface.

The given surface is ¢* cos x = cos y
cos ¥

= & = = z=logcos y ~ log cosx

Cos X
The parametric equation of the given surface is
X=x,Y =y 2z=logcos y~log cosx
where xand y are parameters

Here, u' =x,ul=y
dx dy oz
1 =(au1 » aul 3 aul) = (1,0,1:3.1’1 x)
- {dx Oy az)
d Koy s ; =(1,0,—ta
= 2 (au2 u? 3t ) = )

and  (0,9,%,3,0,%, 9,9,2) = 0,0, sec? x)
(818275’ alazys 31322) ={0,0, 0)
(@94, d204Y, 0042) = @, 0 —sec® ¥
Xy xX,=(-tanx, tan 5, 1)

)
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Now, g1 =X, X, =1+0+tan®x=sec’x
B19= go1 =X, - Xg=~tanxtan y
and 200 =Xy Xy=0+1+tan® y=sec? y
Also, Ni = X, xX, _ (—tanx, tan y,1)
1X; xXf Jtan2x+ tanZy+1
dop = N'0,9p¢ @,B=1,2)
= dyy = N' 9,0, x+ N%,9,y + N°0,9,2
sec? x _ sec® x
= =0+0+ = —
Jtan2x+ tan? y + 1 Jtan2x+ tan® y+ 1
= d12=d21 =Nlalazx+Nzalazy+Naalazz=0+0+0=0
= doo= N385+ N29.9,7 + N23,0,2
_ 2
—040~ sec” y
\/tan2x+ tan2y+ 1

_ ~sec® y
\/tanz x+ tan? y+1
Hence, the given surface to be minimal, if g“ﬁdaﬁ =0

= g'ld;, +28%d, + g%d,, =0 II: gt ='%’g12$_é2“’ g2 = 311]

g g
LHS = gopdy) — 281905 + 89095
sec? xsec® y

5902 X 8882 Yy

\ftan2x+ tan2y+ 1

Therefore, the given surface is minimal surface.

=0=RHS

-0

Jtan2x+ tan2y+ 1

Q 16. Define asymptotic lines aznﬁ prove that the asymptotic lines

2

on the paraboloid 2z = x_z - %2— are > 1 % = A, where A is an
a a

arbitrary constant. (2012)

Sol. Part I Asymptotic Lines The directions which are self-conjugate,
are called the asymptotic directions and the curves whose tangents are
along asymptotic directions, are called the asymptotic lines.

‘Part Il Consider, x, y as parameters, then the parametric equations are
2

' 2y
X=X, V=y,2=—F5 — whe ,x1= X = ,x3=z
YENE= oG [where X y ]

dx dy Bz) ( x)
X el o e R 1: T g
! [ax’ax. ox 0 a’
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dx dy 9z —y
and Xz_(ay a ay) (0,1, bz)

0% 1
A].SU, &g alxl (alalx, d aly, alalz) 0, 0', —
dxox a?
0% : 1
=0 =10,0,— =
oydy e [ bz)
x°
81=X, X, =1+ — o 812 = 89 =X, X2=_”%

2

B22=Xy-Xp=1+ 'gz

Now, g=g,85—(g)°

;. & T
=(1+—4](1+%;]—[*::—y2-]=—~1+—g—4+1

a

\/_g_=EX1xX2I=\f~x—i+£4+1
Va b i
AISO, Ni= Xl XX2 _ - X _}’ 1

1X, xX,| 3 7 >
Lo ag\/£+'—‘1—+1 bz\{f-q—-g—--;-l \/..’F.Z_+_?’_+1

(24 64 ]
Now, dog =N*0, 052
di; = N'0,0,x+ N%,0,y+ N°9,9,2=

= tip=di3=0 = dy= 2 S
‘ J
bz\/-—— + o+ 1
a b
The differential equation of asymptotic is
AUty + 2ddutdul + dy, (dud? =0

= dy; (dx)® + 2d;pdx dy + dop(dy) =0
2 o 1 2_
az\/f—+£+1 e bl"’\/-x-‘z—+f~2-+1 @
ot ph . at 7 Bl
= lz(dx)z 2(dy)2—0 qr . g dy g
a a b a b
On integrating both the mdes, we get -
LI ]
a &
Hence, i + = A, where X is an arbitrary constant.

a b
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—

@ 17 Prove that the necessary and sufficient condmon that a

surface be
(i) plane is that d 5 =0.
(ii) sphere is that dm[3 =6 8op- (2015, 13, 12, 11, 09, 03)

Sol.

() Necessary condition Suppose that the surface is plane.
Then, unit normal at each point of the surface is constant.

= N' =" (say)
Taking covariant differential w.r.t i, we get

N =0

g wg’ﬁ x’ 5 =0 [by Weingarten equation]

= c,,,‘,g x‘ 5=0
= dy 8% dy =04, o
= A8 . 835 =0 [- %5 %p=8ss=8ps]
= dg, 85 =0
= dop=0

Sufficient condition Suppose dsp =0
By Weingarten equatlon, we have )
—d P x‘ﬁ [ dy =0]
=y N i
On mtegratmg, we get
N =, where C* is a constant.
i.e. unit normal at each point of surface is constant.
So, the surface is plane, i.e. duﬂ =0
(1) Necessary condition Suppose that the

surface be a sphere of radius R and centre (*.
From the figure, it is clear that -

C - 2) | N
= C - # = AN voili)
= IC" —A|=IAHNY| [ 1Al=A]
= |C* — o] = [ 1N =1]
= A=R [-]C* - ¥|=R]
On putting A = Rin Eq. (i), we get
'~ ¥=RN'

¥ =C" - RN
Taking covariant derivative w.r.t. u%, we get

x‘ =0 - RN‘

= xfu —RNf{I
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= 5‘"; o =.Rdc¢1g?ﬁ:{ B [by Weingarten equation]
= 2o g =Ry &% 4y :
805 =B dwﬁg
= 8os = R dys
=2 Qo5 = L Eop
R

= dy; =C l—‘avhere C= . constant-l

ol T go:B L 3 ) = J
ie. Qos = Bop

Sufficient condition Suppose that d,3 =C gaﬁ
By Weingarten equation, we have

Ny=—d,g®™; = N ,=-Cg,g";
= N, =-Cglax; = N, ,=-Cxo
On integrating both the sides, we get
Ni=-C#+d [where, a' is a constant]
which show that the surface 1s sphere.

1Le. dos =C 8up Hence proved.

(E) Long Answer Questions

QJ/Iﬁrive Gauss and Weingarten equations and hence
show that xfc = — d"‘i"’.gpﬁ,l\'l'f,Ot : (2015)

Sol. Part 1 See the solution of Q. 3 of Short Answer Questions.
Part IT See the solution of Q. 4 of Short Answer Questions.

Part III We know that Wemgarten equation is
Nty =— dm,g"’ﬁx‘ 5 (D)
On multiplying Eq. (i) by d* 8po» We get
dapgpc Nf o= " dorx'dapgﬁgpo:e: B
= A% gos Ni g =~ df 8P g2
dapgpcs N: o= gpﬁgpoxl, B
= d“"gchfa=-d§x:B=—xfo

l
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QZArove that . ‘
Wxop =dyN' NI, =g GEPXL (2017)

Sol. (i) See the solution of Q. 3 of Short Answer Questions.
(1)) Do same as Q. 1 (part D),

Q 3. If the asymptotic lines are the bParametric curves, then
show that Mainardi-Codazzj equations are

0 1 2
T H - =
aul (log di) {11} +{12} O

2 1
Crma- (2] {1

and Gauss characteristic equation is

% =g [ aj { 62} i fz" {181} ' {162} {681}
) {1(1} {982} J

Sol. When the asymptotic lines are parametric curves,thend,; =0, d,, =0,
Now, Mainardi-Codazzi equation is Bog,y = =dg,
On putting p =1 and Y=2, it becomes d_ o1, 2 = d w21

d 8
= s Aoy = dy, {rx2} dog {12}

P 9 0
= 3_14—1 daz - dez {051} = daﬂ {21}

, 0| |o
Since, {12} = {21} and d;; = d,, =0, then we have

) 2] 5 i ,
ou? Tor — {az} " ek Gz =y {al} @)

Now, putting o = 1, we get

- dig {12} iy {111}

2] -
= 8 7 log d,,] - {11} {12j=0
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Similarly, putting & =2 in Eq. (), we get

¢ 2 1
5;5 gy — dzl-{22} == d12 {21}

2 1
= 5?;5 (log dyp) - d21{22} + {12} =0 | | ... (11)

Now, Gauss characteristic equation is
da'rd[:ks - du]}dm = chRgB'r

fa [3]_ o [3
= dydps — Coples = Sos [a—uﬁ{m}'} Y {aﬁ}

Ll ol o0

On puttinga =1, =1, ¥ =2, 6 =2 and using d,, = dyy =0, we get
[ 3 5 {81 fel[8] [e][3]l
=8 T {12} au® {11} {12} {91} - {11} {ezh
Q 4yl( the lines of curvature are parametric curves, then
show that % (l) + X (l - -—L} i (log g41) =0

P1 Py P2 )ou?
0 1 1{1 1
and-—— — i+ — - ———(logg ) =0,
ou’! [Pz] [Pz Pl)au %

where p, and p, are the radii of principal curvatures.

Sol. When the parametric curves are lines of curvature, then d;, =0

and. g12 =0'.

In this case, the principal radii of curvatures are given by
1 1 _d .
1.9 L G )
Pi 811 P2 82

On putting B =1, ¥ =2 in Mainardi-Codazzi equation dg, — dey g =0, We

get

d[ﬂ. &= daz, 1
d -1 0 8 P 8 0
=3 F dy1 ~de {az} —dgp {12}= ﬁ dys — ez {al}_ daﬂ{zl}
0 0 1 2 ..
= 52 Aoy — EWY Aoz dll{ 2} HE d22{a‘1}=0 [- dip =0]...(D)

On putting o = 1, 2 in Eq. (ii) and using d;, =0, we get
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Bo-afafio

and ;; dpz + d; { } oy {21} | -.(v)

Since, g,, =0, then we have

8’11=_ g22~.——andg12—-0

811 &az
. 1 — g]'a{a 12] = gll[l 12] = 1 -r—-i-— g ‘ ...(V)
12 ’ T 2g, a2t |
2 »s 1 3 .
and {11} B, 11)=g 2,11]= 2_% 322 B3 Vi)

: 1 2
. On putting the values of { 12} and {1 I}ﬁom Egs. (v) and (vi) in Eq. (i),

we get
i a_dl_ Ll _ E [‘_il_i + 52_2) .a._gl.l =0
wu* 2\gy &) dul
od, 11  1)9g : : P

Now, differentiating Eq. (D) w.r.t. 22 we get
3 1) 2By,
&y ou’ t gf:l ou 2 &
et {1 ( % ‘J‘ %y _1 831217 [from Eq. (vii)]
811 2 M au £ a J

-1 _1__i 9 1
2 {p, 3 =5 108 £,

du® \ p, P1 P2 3’ "o

Similarly, the other result can be obtained.




